Корзина
Пока пусто
 

Эхолот с боковыми лучами


Эхолоты с боковым обзором SideScan, SideVü, Side Imaging, SideVision

Id: 3693

Id: 3693


Тип устройства: Картплоттер с эхолотом
Вид эхолокации: Традиционное сканирование ,Нижнее сканирование ,Боковое сканирование ,3D
Трансдьюсер: Датчик опционально
Управление: Ручное
Диагональ экрана: 7"
Разрешение экрана эхолота: 800 х 480
Модуль GPS / ГЛОНАСС: GPS

Эхолот/картплоттер Element 7 - 7" с Wi-Fi: Сонар CHIRP, DownVision™, SideVision™, RealVision 3D™, режим HyperVision (1,2 МГц CHIRP). Построение батиметрических карт с функцией RealBathy™. Поддержка картографии: C-MAP 4D, Navionics, LightCharts NC2. Без датчика.

Советы по использованию эхолотов с боковым обзором

В 2005 году на рынке рыболовных эхолотов произошла революция: компания Humminbird представила первый эхолот с боковым обзором. Рыболовы быстро оценили преимущества новой технологии, и теперь, через десять лет, эхолоты-картплоттеры с боковым обзором присутствуют в линейках многих брендов. Но даже спустя десять лет многие люди, купившие такой эхолот, не знают, как правильно его использовать и как правильно интерпретировать информацию на экране. Неважно, это Side Imaging от Humminbird, StructureScan от Lowrance или SideVü от Garmin, базовые принципы везде одинаковые, и эта статья поможет вам правильно использовать все возможности Вашего эхолота с боковым обзором, на который вы потратили кровно заработанные деньги.

Первый шаг - правильная установка

Прежде всего, необходимо обратить особое внимание на установку датчика эхолота. Если датчик установить неправильно, то отраженный сигнал будет считываться с помехами и искажениями, приводя к путанице и разочарованиям. Есть несколько вариантов размещения датчика. Все они работают, но некоторые дают более чистую картину. Для монтаже можно использовать крепеж, идущий в комплекте, а можно купить дополнительные приспособления.

Датчик ДОЛЖЕН иметь полный обзор из стороны в сторону. На пути сигнала не должно быть никаких препятствий: ни мотора, ни транцевых плит, ни выпуклых деталей корпуса, ни элементов крепления других датчиков. Место крепления датчика на катере может быть разным.

1. Навесной транец лодочного мотора

Удобное место для установки датчика, хотя придется просверлить несколько сквозных отверстий. Датчик скорее всего не будет работать при глиссировании, зато он защищен от ударов о подводные препятствия.

Под навесным транцем

В зависимости от формы корпуса, под навесным транцем может быть свободное место для установки датчика.

2. Выступ на транце

На больших катерах, таких, как например Ranger, на транце под мотором есть выступ. Это безопасное место для датчика, и поток воды там обычно ламинарный. Датчик скорее всего не будет работать при глиссировании, зато он защищен от ударов о подводные препятствия.

3-4. Транец

Для постоянной установки потребуется просверлить несколько отверстий для установки крепежа датчика. Важно это сделать правильно с первого раза. Для небольших судов (лодки из ПВХ) удобно использовать дополнительно приобретаемую струбцину, крепящуюся к транцу. Удобство этого варианта в том, что можно легко регулировать положение датчика (смещать его вверх-вних и поперек транца). В положении 3 датчик может не работать в режиме глиссирования. В положении 4 датчик будет работать в режиме глиссирования, но возникает опасность повреждения его при ударе о подводное препятствие.

 

На фотографиях показан работающий вариант размещения датчиков LSS-2 и 83/200 на одной съемной штанге. Фотографии размещены с любезного разрешения их автора, igorsd. Обратите внимание, что датчик LSS-2 развернут вперед по ходу движения лодки. Это сделано для того, чтобы нога мотора не перекрывала боковые лучи StructureScan. При таком монтаже необходимо переключить стороны сканирования Left-Right (Лево-Право)  в настройках прибора. Такая конструкция на транце лодки из ПВХ испытана на скоростях до 35 км/ч. 

5. Троллинговый мотор

Некоторым нравится монтировать датчик бокового обзора на троллинговый мотор. При небольшой практике и на маленьких скоростях из такого монтажа можно извлечь много пользы. 

 

Правильное подключение к источнику питания

Неправильное подключение питания приводит к появлению помех на экране эхолота. В идеале, лучше всего протянуть провода питания напрямую к аккумулятору, а все соединения пропаять. Не забудьте установить в цепь предохранитель, идущий в комплекте с прибором.

Иногда бывает трудно подключиться напрямую к батарее. Если в лодке уже есть проводка, и вы можете подключиться только к ней, то убедитесь, что толщина провода не меньше 1 мм, иначе все-таки придется протягивать отдельный провод питания. Для прожорливого 12-дюймового экрана лучше использовать провода не менее 1.5 мм толщиной.

 

Место установки антенны GPS-приемника

Прошли те времена, когда картплоттеры комплектовались внешней GPS-антенной. Теперь она внутренняя, и сам картплоттер разнесен с датчиком. Это значит, что между реальным положением объекта и его отметкой на карте будет некоторое расстояние. Поэтому, если Вы хотите, чтобы все интересующие вас объекты находились на карте там, где они действительно расположены, докупайте внешнюю GPS-антенну и устанавливайте ее как можно ближе к датчику.

Если же внешнюю антенну покупать и устанавливать по каким-то причинам нежелательно, то при маркировке объекта устанавливайте курсор немного за ним, чтобы компенсировать разницу в положении датчика и картплоттера, это требует некоторого опыта.

Второй шаг – используйте настройки по умолчанию, сканируйте известные объекты

Не стоит при первом же выходе на воду начинать крутить настройки. Самое правильное будет оставить все настройки как есть на некоторое время. Пройдите рядом с видимыми объектами: со слипами, сваями, камнями, островками травы, чтобы понять, как эти объекты выглядят на экране эхолота. При этом скорость движения судна не должна превышать 5-8 км/ч, а дистанцию бокового сканирования на экране лучше установить не более 25-30 метров, чтобы разглядеть все детали.

Как только вы начнете понимать, что вы видите на боковом обзоре, вы можете начать экспериментировать с настройками.

Третий шаг – использование записи лога сонара

Функция  записи лога сонара является одним из самых мощных средств для изучения и оптимизации вашего эхолота с боковым обзором. Удивительно, но большинство пользователей не используют записи лога для этих целей, поэтому здесь мы хотим расширить их горизонты.

Как именно запись лога может помочь нам, рыболовам, научиться правильно читать информацию на экране? Путем записи ВСЕХ данных сонара в файл, так что можно позже проиграть это файл на экране. В процессе проигрывания записи можно изменять любые настройки, чтобы посмотреть, как будет меняться картинка. Запись облегчает эксперименты с настройкой.

Вот что можно изменять в процессе проигрывания записи.

Чувствительность – если она завышена, изображение замывается сигналами от помех. Если чувствительность занижена, важные объекты не показываются. Поэтому наилучшим решением будет оставить этот параметр как он установлен по умолчанию, сделать несколько записей и уже потом экспериментировать.

Контраст – также известный как “Уровень белого”, регулирует уровень освещенности на экране. Более высокий контраст усиливает цвета, но если его завысить, мелкие детали начнут исчезать, а слишком низкий контраст просто затемняет всю картинку.

Резкость – эта настройка регулирует четкость границ объектов. При увеличении резкости изображение становится более зернистым, зато становится возможным обнаружить рыбу, прячущуюся на дне.

Скорость прокрутки изображения – слишком высокая скорость прокрутки на медленно движущейся лодке приведет к размыванию изображения. И наоборот, слишком низкая скорость прокрутки на быстро движущейся лодке также снизит качество картинки, которая “сожмется” в вертикальном направлении. Во время использования бокового обзора при троллинге будет полезно снизить скорость прокрутки до 1 или 2.

Масштаб – это ширина полосы (лодка находится в середине этой полосы), показываемой на дисплее. Чем уже эта полоса, тем более детальное изображение показывается на экране. Чем больше на дне различных структур, тем, по идее, меньше должен быть масштаб. Например большие неглубокие поливы стоит сканировать с масштабом 30 метров или более. При сканировании бровок и других мест с рельефом масштаб стоит уменьшить. Установите масштаб 10-20 метров в каждую сторону, и вы увидите, насколько станет легче увидеть рыбу среди посторонних объектов.

Частоты сканирования 455 и 800кГц

Практически все эхолоты с боковым обзором имеют в своем арсенале частоту 800кГц, но многие рыболовы даже не подозревают об этом инструменте в своем арсенале. На частоте 455 кГц дальше обзор, но максимальная детализация изображения проявляется на частоте 800кГц. Если вы сканируете большие однородные участки дна, и ищете там одиночные изолированные объекты, выбирайте частоту 455кГц. Обнаружили что-то интересное? Пройдите по этому месту уже с частотой 800кГц, для получения более четкого изображения подводных структур.

Цветовые палитры

Различные структуры на дне и состав дна по-разному отображаются на экране в разных цветовых палитрах, так что здесь тоже есть пространство для экспериментов. Пятна глины, ракушка, гравий, камни – все эти интересующие рыболова объекты будут выглядеть немного по-разному в разных палитрах. Опытные пользователи переключаются в определенную палитру при поиске нужных им составов дна.

Просмотр сигнала только с одной стороны от лодки

Предположим, вы сканируете бровку по левому борту в поисках стаи кормовой рыбы и охотящихся за ней хищников. В этом случае уместно будет вывести на весь экран только левую половину изображения, чтобы получить более детальную картину. Когда будете вести сканирование бровки в обратном направлении, переключитесь на правую половину.

 

Резюме

Итак, мы еще раз обращаем ваше внимание на три основных момента.

  1. Правильная установка: датчик должен быть установлен в месте с полным обзором из стороны в сторону, питание должно быть подведено к эхолоту проводами достаточной толщины.
  2. Сначала просканируйте знакомые вам объекты и подводные структуры. Это поможет вам понять, как разные объекты выглядят на экране.
  3. Записывайте логи. Если увидите интересную придонную структуру, запишите лог на частотах 455 и 800 кГц. Это позволит вам проиграть запись в будущем и поэкспериментировать с настройками.

Чем больше логов вы запишете и проанализируете, тем быстрее вы станете экспертом в использовании технологии бокового обзора в знакомых и незнакомых водоемах. Желаем Вам удачи и удовольствия от использования Вашего оборудования!

 

Наш магазин предлагаем продукцию Lowrance по низким ценам. Хотите приобрести недорого эхолоты-картплоттеры с боковым сканированием серии Lowrance HDS или Lowrance Elite Ti? Команда нашего магазина будет рада вам в этом помочь!

Оригинал: http://www.sonarwars.com/side-imaging-tutorial-tips/

Нижнее сканирование или боковое сканирование

Вы когда-нибудь задумывались о том, чтобы сравнить одну технологию эхолокации с другой? Наличие эхолота с боковым и нижним сканированием это замечательно, но нужно понимать, когда лучше всего использовать тот или иной режим.

В этой статье мы рассмотрим, что лучше: боковое сканирование или нижнее.

Терминология

Часто нам задают вопросы, такие как: Что лучше DownVü и SideVü от Garmin или DownScan и SideScan от Lowrance, а также что лучше использовать в том или ином сценарии: Нижнее сканирование или Боковое.

Одной из причин того, что сравнение тех или иных режимов от разных производителей весьма сложная задача, является  тот, что эти термины обычно используются в маркетинговых целях; следовательно, это фирменные названия.

Например, ведущий производитель эхолотов Lowrance использует термины DownScan и SideScan в качестве обозначения данных режимов, Garmin же использует термины DownVü и SideVü. Humminbird использует термины «нижнее изображение» и «боковое изображение».

Помимо названий, рыболовы часто пытаются определить направление, в котором их эхолоты испускают волны сонара.

В то время как модели эхолотов с нижним сканирование имеют датчик, направляющий волны эхолота под лодку, модели с боковым сканированием направляют лучи в сторону лодки. Следует отметить, что оба типа сканирования в определенном смысле лучше друг друга. Следовательно, всегда важно понимать обстоятельства, в которых каждый используется.

DownScan Imaging против SideScan Imaging

В этой части статьи мы будем напрямую сравнивать боковое и нижнее сканирование. Мы рассмотрим преимущества и недостатки каждого из них.

SideScan

Преимущества

Недостатки

DownScan

Преимущества

Недостатки

Что лучше: боковое или нижнее сканирование?

Оба режима различны в том, как они работают, и в том, что они визуализируют. При определении того, что лучше именно для вас, вы должны учитывать глубину, на которой вы будете ловить рыбу, а также скорость, с которой вы будете передвигаться. Кроме того, вы должны подумать о размере рыбы и местности, в которой вы будете ловить рыбу.

Вывод

В конце концов, нельзя так просто выбрать одно или другое. Ваше решение должно основываться на определенных сценариях использования. Если вы выбираете эхолот с боковым сканированием или нижним, то это тот случай, где нужно хорошо все обдумать.

Боковые изображения лучше на мелководье и охватывают более широкий диапазон. Нижние изображения идеально подходят для большей глубины и при этом модели, поддерживающие его дешевле.

Пособие по боковому сканированию | Lowrance.ru

В 2005 году произошла революция в рыболовном мире, так как был представлен первый эхолот с поддержкой бокового сканирования. Преимущества этой технологии быстро завоевали популярность у рыболовов. Теперь, спустя 14 лет, эхолоты с боковым сканированием можно встретить даже на самых простых моделях эхолотов.

Однако, даже по прошествии всех этих лет, многие люди, которые покупают устройство, способное создавать боковые изображения, не знают, как его использовать, а также что на нем изображено. Мы решили создать пособие по боковому сканированию, которое поможет вам научиться использовать и читать их.

Шаг 1 — Необходимо правильно установить датчик

Первое, на что вы должны обратить пристальное внимание при поиске рыбы, — это установка датчика. Без правильной установки вы будете с самого начала создавать себе проблемы. Это приведет к ненужной путанице и разочарованию. Изучите эти основы, и вы будете на пути к получению потрясающей детализации изображения.

Размещение датчика является ключевым

Не важно, куда вы устанавливаете дисплей, важно то, куда установлен сам датчик StructureScan. Неправильное размещение преобразователя создаст проблемы с самого начала, оставляя вас разочарованными, даже не зная, почему.

У вас есть несколько вариантов монтажа. Все они будут работать, но некоторые немного «правильнее», чем другие. Вы можете использовать оборудование, поставляемое с вашим устройством, или купить дополнительные запчасти для иного размещения.

Датчик ДОЛЖЕН иметь четкую видимость боковых сторон как с лева, так и справа от лодки. Не должно быть никаких препятствий, таких как винты двигателя или корпус судна.

Вот несколько мест для установки датчика:

Совет — Если вы крепите датчик к транцу, было бы целесообразно рассмотреть «держатель датчика эхолота / струбцина». Он обычно стоит не дорого, но при этом является отличной страховкой в том случае, если вы наткнетесь на мель или камень.

«Чистая» электропроводка

Чистая проводка при установке гарантирует, что вы получите необходимое питание для вашего устройства, что поможет обеспечить ваше устройство чистой, бесшумной визуализацией бокового изображения.

Чаще всего проводятся все питающие провода непосредственно к аккумулятору напрямую и припаиваются все клеммные соединения. Также не забудьте установить идущий в комплекте предохранитель в соответствии с руководством по установке.

Расположение приемника GPS

Раньше все эхолоты / картплоттеры поставлялись с внешней «антенной» GPS. Эти дни прошли, поскольку производители решили использовать более простую внутреннюю GPS-антенну, встроенную в устройство.

Это означает, что, если вы не купите внешний GPS приемник, чтобы разместить его рядом с датчиком, то будет иметь место x-y несоответствие между тем, где ваш дисплей отмечает объект, и тем, где фактически он находится.

Совет — Если вам важно иметь максимально точные путевые точки (которые должны быть), то вам следует купить внешний приемник GPS и установить его как можно ближе к преобразователю. Это гарантирует, что ваши путевые точки будут максимально приближены к тому местоположению, которое вы отсканировали.

Если вы решите ограничиться внутренним GPS, то вам нужно будет отметчать точки немного позади того места, которое вы хотите отметить. Однако, этот метод требует много проб и ошибок.

Шаг 2. Использование настроек по умолчанию, сканирование простых объектов

У вас может возникнуть соблазн начать играть с чувствительностью и контрастностью в тот момент, когда вы окажетесь на воде, но было бы лучше, если бы вы оставили все по умолчанию, пока вы не научитесь интерпретировать изображение на автоматических настройках. Проезжайте мимо видимых объектов, таких как опоры мостов, камни и коряги, чтобы узнать, как выглядят подводные объекты на виде сбоку.

  Совет — Для достижения наилучших результатов вы должны запускать боковое сканирование на скорости до 9-18 км/ч.

  Совет — Установите диапазон сканирования до 40 метров для начала, чтобы получить хорошую детализацию, при изучении первых сканирований.

Только после того, как вы поймете, что вы видите на изображении бокового сканирования, вы можете начать экспериментировать с элементами управления и настройками. Вот краткое определение некоторых из них.

Шаг 3: Изучение при помощи записи эхограммы

Малоизвестный факт, что функция записи эхограммы является единственным наиболее полезным инструментом для изучения и понимания эхолота. Это действительно удивительно, что большинство людей не знают, как использовать записи, и мы хотим помочь распространить информацию.

Как именно запись эхолота помогает нам, при обучении чтения боковых изображений? Это помогает путем записи ВСЕХ данных сонара в файл, который в последующем вы можете воспроизвести в полноэкранном режиме на компьютере. Это позволяет изменить все настройки, чтобы увидеть, как меняется изображение. Записи позволяют экспериментировать с настройками и выяснять, как каждая из них влияет на изображение в режиме реального времени.

Экспериментируйте с чувствительностью, контрастностью, резкостью и скоростью

Чувствительность — когда чувствительность становится слишком высокой, изображение размывается. При слишком низком значении вы потеряете определенные детали. Лучше оставить их по умолчанию, пока вы сделаете несколько записей и поэкспериментируете с различными комбинациями.

Контрастность — Контрастность также известна как «уровень белого» и регулирует общий уровень света на изображении. Более высокий контраст усиливает цвета, а при слишком высоком уровне он размывает детали, а слишком низкий уровень контрастности — все.

Скорость эхограммы — высокая скорость, когда лодка движется очень медленно, приведет к размытому или смазанному изображению. Низкая скорость прокрутки при быстром движении приведет к тому, что изображения с данных сонара не будут обновляться на экране.

Используйте функцию диапазона

Диапазон — это то, как далеко на дисплее будут отображаться данные сонара. Чем шире диапазон, тем больше данных помещается на экране. Чем уже диапазон, тем больше детализация данных. Ваш диапазон должен зависеть от того, какой тип структуры вы сканируете.

Совет — При сканировании свалов и выступов важно сузить диапазон для эффективного просмотра, чтобы вы просматривали интересующую область и не теряли место на экране. Попробуйте использовать диапазон 15-30 метров с каждой стороны в следующий раз, когда вы будете искать рыбу, и вы будете поражены тем, насколько легче увидеть настоящую рыбу между объектами и дном.

455 против 800 кГц

Большинство, эхолотов с боковым сканированием имеют частоту 800 кГц, но многие рыболовы даже не осознают, что имеют в своем арсенале этот инструмент. 455 кГц обеспечивает большую зону покрытия, а 800 кГц — самые четкие изображения. Думайте об этом так; Эхолот может генерировать сигнал эхолота с большой мощностью, и эта мощность распространяется по всей зоне покрытия. Поэтому при установке на 800 кГц больше энергии направляется на более узкую область, обеспечивая более детальные обратные сигналы и изображения.

Совет  — 455 кГц отлично подходит для многих вещей, таких как сканирование огромных площадей на наличие сорняков и изолированных кусков укрытия рыбы

Совет  — 800 кГц отлично подходит для повторных проходов по интересующим областям, чтобы получить наилучшее представление о том, что происходит в этой области. 800 кГц может помочь выявить отдельных рыб, которые могут не появиться на вашем первом проходе.

Экспериментируйте с цветовой палитрой

Различные цветовые палитры будут по-разному отображать композицию дна, так что это еще один параметр, с которым можно играть в своих записях, чтобы найти тот, который лучше всего подходит для вас.

Переходы плотности дна, гравий и камень, будут выглядеть немного по-разному в каждой цветовой палитре. Опытные пользователи знают, что нужно переключаться на определенные цветовые палитры, в зависимости от структуры.

Не использовать многооконный режим

Чтобы отобразить наибольшее количество данных на экране, лучше использовать полноэкранную визуализацию. Это позволяет отображать больше данных сонара в доступном пространстве экрана.

Ищите проблему

Если вы выполнили все эти шаги и по-прежнему испытываете проблемы или не получаете необходимого изображения, которое, по вашему мнению, следует, то обращайтесь к более опытным пользователям, на различных форумах. Чтобы получить наилучшую помощь в вашей ситуации, обязательно опубликуйте фотографию вашей установки датчика, модели эхолота и несколько снимков экрана.

Заключение

В заключение этого учебного пособия по SideScan, мы хотим, чтобы вы помнили 3 ключевых момента, когда вы начинаете изучать боковое сканирование:

Чем больше времени вы потратите на записи в тех местах, где вы ловили рыбу, тем быстрее вы станете экспертом в использовании этой технологии для поиска рыбы как в знакомых, так и в новых водах. Удачи, мы надеемся, что данное пособие по боковому сканированию поможет вам в освоении данной технологии.

рейтинг топ-10 по версии КП

Еще одна универсальная модель для любой рыбалки. Производитель акцентирует внимание на том, что прибор подойдет как для пресной, так и для соленой воды. В принципе с этими задачами любые хорошие эхолоты, а вот у дешевых моделей возможны погрешности. «Пробивает» глубину до 40 метров. Датчик можно закинуть от базы на сотню метров. Прибор сканирует на 90 градусов от себя. Программное обеспечение устройства переведено на русский язык. Во время сканирования тут же выводит на экран иконки рыб, дифференцируя ее по размерам. Можно откорректировать чувствительность датчика, чтобы он, например, не воспринимал траву. Редкая, но нужная функция — подсветка экрана. Эхолот экономичен. Правда, работает на «шайбах» CR-2032. Обратите внимание, что в продаже есть еще и расширенная комплектация. Она обозначается буквами Li. В коробку к такой дополнительно кладут проводной датчик, крепление, антенна, зарядник от сети и прикуривателя и кейс для набора.

Характеристики

Один луч, портативная конструкция, трансдьюсер в виде поплавка, питание от батареек/аккумуляторов.

+ Цена/качество

- Если рыба плавает у дна, может рисовать ложные углубления

Простыми словами о современных эхолокационных технологиях, или что такое BroadBand, DownScan, StructureScan, CHIRP

ринцип работы эхолота прост. Датчик излучает в воду ультразвуковой сигнал. Тот доходит до препятствия и отражается от него. Датчик принимает отраженный сигнал и фиксирует время, которое прошло между излучением и приемом t. Зная скорость распространения звука в воде v, можно посчитать расстояние до препятствия по формуле S=v*t/2. Почему делим на два? Потому что сигнал прошел двойное расстояние, туда и обратно.

Однако рыболову, желающему в наше время впервые приобрести эхолот, приходится сталкиваться с большим количеством непонятных терминов. 2D сонар с чирпом, даунскан, SideVü, голова идет кругом, и жалко тратить время для перелопачивания большого количества интернет-ресурсов, чтобы во всем разобраться. Поэтому мы решили написать статью, в которой простым языком, в одном месте и по возможности кратко будет рассказано обо всех этих чудесах эхолокации.

 

Старая добрая классика: Broadband, 2D Sonar

Начнем мы сначала, с классического эхолота. То, что теперь называется BroadBand, 2D, эхолот, широкополосный эхолот, сонар, классический сонар. Технология старая, но не потерявшая своей актуальности! В чем ее особенность?

Особенность в том, что датчик излучает сигнал в форме конуса. Выглядит это примерно так:

Рис.1 Классический двухлучевой эхолот

Здесь показан пример двухлучевого эхолота с лучами 20 и 60 градусов. Более широкий луч просвечивает больший объем воды и видит больше рыбы. Зато в этом луче не видеть ничего на дне, кроме плавного изменения глубины, все детали дна замываются. Узкий луч рисует дно более подробно, чем широкий, но рыбу ищет хуже.

Рыба на экране классического эхолота показывается в виде дуг. На рисунке ниже показано, почему так происходит.

 

Рис.2 Как формируются дуги

Пусть лодка движется, а рыба неподвижна. Рыба попадает в край луча в точке А, затем проходит через центр В и затем выходит из луча в точке С. В  моменты А и С рыба находится дальше от датчика, чем в момент В, когда рыба близка к оси конуса излучения (в этот момент расстояние от рыбы до датчика минимально). Так и образуется дуга на экране.

Преимущества классического эхолота: большой объем просвечиваемой датчиком воды, легче найти рыбу, светит глубоко (несколько сотен метров – не проблема).

Недостатки классического эхолота:

  1. Низкая детализация дна. Все выделяющиеся объекты, размеры которых меньше размера пятна, “подсвечиваемого” на дне, будут видны на экране как плавный холм с размерами около размера пятна. Вся детализация потеряется.
  2. Невозможно понять, в каком направлении находится рыба или любой объект, от которого отразился сигнал, известно только расстояние до нее.
  3. Кроме того, недостатком классического эхолота является наличие мертвых зон. Если, например, глубина начинает резко увеличиваться, то сигнал отражается от верхней бровки, а ниже бровки все объекты не показываются. Если на ровном дне стоит высокий узкий камень, то сигнал отражается от вершины камня, и рыба, стоящая на дне у камня, не видна.

Рис.3 Мертвая зона

Мертвая зона существует даже при ровном дне. На рисунке показано, какая рыба будет видна на экране эхолота, а какая сохранит свое присутствие в тайне, потому что находится в мертвой зоне.

 

 

Что такое нижнее сканирование

Мысль конструкторов не стояла на месте, и несколько лет назад появились принципиально другие эхолоты, форма луча которых напоминает не конус, а дольку лимона.

Рис.4 Форма луча классического эхолота и эхолота нижнего сканирования DownScan

На рисунке представлен пример эхолота, совмещающего в себе один классический луч, и один луч нижнего сканирования. Здесь необходимо сказать, что разные производители по-разному называют эту технологию. У Garmin это СlearVü   (Vü – видимо, от View), у Lowrance это DownScan, у Humminbird – DownImage. Но суть везде одна: датчик излучает луч не в форме конуса, а в очень узком в продольном и широком в поперечном направлении. Что получает при этом рыболов, и что он теряет?

Проще начать с того, что теряется. Объем просвечиваемой воды гораздо меньше, чем в случае классического эхолота. Поэтому, если вы ловите с якоря, в луч будет попадать гораздо меньше рыбы. В продольном направлении угол раствора луча составляет буквально несколько градусов, шаг вперед-назад, и рыба в луч не попадает. При ловле с якоря DownScan ничего не дает, и в этом случае лучше пользоваться обычной классикой.

Совсем другое дело при ловле в движении или во время поиска рыбы. Тут преимущества DownScan проявляются во всей красе. За счет того, что луч в направлении движения лодки очень узкий, разрешение картинки у DownScan гораздо выше, чем у классического эхолота.

Рис.5 Пример картинки с DownScan

Пример картинки с Lowrance Elite DSi. Детализация, при которой на затопленных деревьях видна каждая веточка. Для классического эхолота такая детализация недостижима в принципе. Вместо дерева на экране был бы размытый бугор.

Рис.6 Еще один пример картинки с DownScan

Еще один пример – упавшее дерево на DownScan. А под ним стоит стая рыб. 

Не будем перегружать статью красотами подводного мира, любой желающий может самостоятельно набрать в строке поиска браузера DownScan Imaging и насладиться видами затопленных кораблей, автомобилей, мостов, деревьев, камней и прочего.

Но как же DownScan отображает рыбу? В случае классического эхолота рыба показывалась дугами. Рыба входила в конус, проплывала его за довольно продолжительное время (или конус проходил через рыбу), за это время рисовалась дуга. Теперь конуса нет, луч узкий, при движении лодки рыба попадает в луч на короткое время и тут же выходит из него. И на экране эхолота она видна не как дуга, а как пятно. Стая малька может выглядеть как облачко. Пример ниже.

Рис.7 Рыба на классическом эхолоте и на DownScan

Слева на экране панель классического эхолота, справа – DownScan. Видно, что классический эхолот даже не отделил рыбу от дна, возможно из-за того, что рыба находится в мертвой зоне. Однако DownScan при проходе поперек бровки четко показал как стайку мелочи (показана зелеными стрелками), так и отдельных более крупных рыб (показаны черными стрелками).

Если рыба крупная, и удачно сориентирована по отношению к лучу, то можно наблюдать и такую картинку:

 

Рис. 8 Примеры отображения крупных рыб на DownScan

Размер пятна рыбы на экране зависит от времени пересечения рыбой луча DownScan. Чем крупнее рыба, и чем медленнее она движется относительно лодки, тем след крупнее.

Как видите, качество изображения по сравнению с классикой отличается как день от ночи. Необходимо отметить, что для наилучших результатов при использовании технологии DownScan лодка должна двигаться медленно и равномерно, чтобы луч DownScan работал как оптический сенсор копировального аппарата.

Преимущества DownScan:

  1. Детализация.
  2. Детализация.
  3. Детализация

Недостатки DownScan:

  1. Просвечивает меньший объем воды по сравнению с классическим эхолотом.
  2. Луч DownScan не проникает так глубоко, как луч классического эхолота, всего до 90-100 метров. Для нашей страны и рыбалки в реках и озерах это не очень актуально.

Пример приборов, совмещающих классический сонар и нижнее сканирование: Garmin Striker Plus 4cv и эхолот-картплоттер Garmin Echomap UHD 63cv.

 

Что такое боковое сканирование

 

Возьмем два луча DownScan и направим их не вниз, а направо и налево. Мы получили боковое сканирование. И снова необходимо сказать, что разные производители по-разному называют эту технологию. У Garmin это SideVü, у Lowrance это StructureScan, у Humminbird – SideImage. Названия разные, суть одна.

Рис.9 Форма лучей эхолота с боковым сканированием StructureScan

На рисунке показан пример эхолота, имеющего в арсенале двухлучевую классическую часть и два луча бокового сканирования. На самом деле датчики бокового сканирования обычно включают в себя и нижнее сканирование, но сейчас это неважно. Итак, мы видим два узких луча, светящих в стороны от лодки. Как показать на экране все богатство информации, которую получает теперь эхолот? Для этого придется сменить точку зрения. :) Если в случае классики и нижнего сканирования мы смотрели на толщу воды сбоку, то теперь смотрим на воду сверху. Если раньше лодка на экране находилась вверху справа, а развертка осуществлялась справа налево, то теперь лодка находится в верхней части экрана посередине, а развертка идет вниз.

Рассмотрим подробнее, что показывает нам экран эхолота, работающего в режиме StructureScan.

 

Рис.10 Пример картинки с экрана эхолота с боковым сканированием StructureScan

Вот пример такой картинки. Развертка, напоминаем, сверху вниз, лодка наверху посередине экрана. Формируется такая картинка следующим образом. Столб воды вместе с дном по обе стороны от лодки развертывается в одну плоскость и показывается на экране.

Рис.11 Как формируется картинка на экране StructureScan - что чему соответствует

В результате от середины (A)  экрана в обе стороны до точки (С) показан столб воды (B) под лодкой. Он отображен темной полосой посередине экрана. Полуширина этой полосы равна глубине. На нашем примере на рис. 10 глубина составляет примерно 30 футов. Дальше к краям экрана уходит дно. Обратите внимание, что стоящие на нем объекты отбрасывают тени, как будто мы светим фонарем в стороны от лодки. Собственно, мы им и светим, только фонарь у нас не оптический, а ультразвуковой. Более светлые места на экране – это участки, от которых луч отразился сильнее. Темные участки – это тени от возвышающихся объектов, от них луч отразился слабее. Получается будто мы смотрим на осушенное дно сверху, подсвечивая его сбоку, видим все объекты на дне с отбрасываемыми ими тенями, а вода куда-то исчезла. На нашем примере на рис. 10 слева от лодки мы видим крупные валуны и стволы деревьев, а справа – отдельно стоящие затопленные деревья с ветками.

Как и в случае с DownScan, отсылаем читателя в поиск по интернету для ознакомления с другими красивыми картинками со StructureScan, здесь лишь кратко остановимся на том, как StructureScan показывает рыбу.

Рис. 12 Стаи рыбешки на StructureScan

Стаи рыбьей мелочи прямо под лодкой на StructureScan (слева), DownScan (справа наверху) и классический эхолот (справа внизу). Автор снимка предполагает, что форма этих стай в виде полумесяцев  прямо указывает на то, что на мелкую рыбу охотится крупная рыба, и мелочь старается увернуться. Помним видео охоты марлинов на стаю мелкой сельди, и как стая изменяет форму при атаках хищника? Вот тут тоже самое.

Рис.12 Рыба в боковых лучах StructureScan

На рис.12 глубина около 15 футов. Слева в боковом луче видна стая рыбы в толще воды (в толще, потому что теней не видно, они за границей экрана). Справа видны светлые черточки с тенями – более крупная рыба у дна.

Как видно из приведенных примеров, идентификация рыбы на DownScan и StructureScan более сложна, чем на классическом эхолоте. Тут вам нет никаких четких дуг, и тем более режима Fish ID. Интерпретация картинки требует определенного опыта. Здесь я не буду распространяться далее на эту тему, желающим узнать больше советую познакомиться со статьями Сергея Никулина   “Видовая идентификация рыб с помощью рыбопоисковых технологий Lowrance” и “StructureScan: next level”.

Примеры эхолотов/картплоттеров с технологией StructureScan: Lowrance Elite-7 Ti2 с датчиком Active Imaging 3-in-1, картплоттер Lowrance HDS-9 Live c датчиком Active Imaging 3-in-1.

 

Что такое CHIRP?

Ну и наконец последнее, о чем мы поговорим в этой статье, это технология CHIRP. Предыдущие технологии отличались друг от друга формой и направлением луча. CHIRP же – это не про луч, а про частоту излучения сигнала. CHIRP расшифровывается как Compressed High-Intensity Radiated Pulse  - сжатый высоко-интенсивный излученный импульс. Эхолот без CHIRP излучает короткие импульсы на одной частоте. Эхолот CHIRP излучает более длинный сигнал в диапазоне частот (частотно-модулированный сигнал).

Что это дает рыболову? Прибор обрабатывает отраженный сигнал сразу на нескольких частотах и извлекает из него больше информации. По утверждению производителей при этом улучшается шумоподавление, растет чувствительность, становится возможным различать рядом стоящих отдельных рыб (улучшается разделение целей). На практике же разница между эхолотами без CHIRP и с ним невелика, особенно на небольших глубинах. По крайней мере нам не удалось найти источники, в которых ясно демонстрируется безоговорочное преимущество CHIRP в сравнительном анализе с эхолотом без CHIRP.

Рис. 13 Сравнение CHIRP и не CHIRP

На рис. 13 показан пример сравнения . Слева – картинка с CHIRP, справа – с обычного эхолота на частоте 145 кГц. Никакой разницы не видно. У дна стоит стая некрупной рыбы.

В настоящее время практически все эхолоты используют технологию CHIRP, причем как в классическом сонаре, так и в нижнем и боковом сканированиях.

 

 

Заключение

Цель статьи – дать краткое описание современных эхолокационных технологий, используемых  в современных эхолотах, со сжатым описанием их возможностей. Надеемся, что эта цель достигнута. Нужно понимать, что тема эта очень обширна, написано множество статей, описаний, а на рыболовных форумах темы с обсуждениями способов использования и совместного разглядывания картинок с DS и SS занимают не одну сотню страниц. Мы же надеемся, что после прочтения этой статьи  читатель не будет путаться в терминологии и спокойно разберется в заинтересовавших его тонкостях. Ну а за покупкой добро пожаловать к нам, в Санкт-Петербург, в магазин эхолотов и картплоттеров http://echolot-spb.ru. 

Однолучевые эхолоты для гидрографических исследований

Гидрографические исследования с однолучевыми эхолотами (SBES)

Однолучевые эхолоты (SBES), также известные как эхолоты или фатометры, определяют глубину воды путем измерения времени прохождения короткого импульса сонара или «пинга». Пинг сонара излучается датчиком, расположенным чуть ниже поверхности воды, а SBES отслеживает отраженное эхо от дна. На самом деле энергия сонара будет отражена всем, что может оказаться на пути звука - рыбой, мусором, водной растительностью и взвешенными отложениями.Однолучевые эхолоты для гидрографических исследований могут определять точную глубину дна, отличая реальное дно от любых ложных сигналов в возвращенном эхе. Истинные гидрографические однолучевые эхолоты геодезического качества записывают цифровую эхограмму водяного столба или огибающую эхосигнала, которая обеспечивает графическое представление отраженного эхосигнала. Исторически эта информация была представлена ​​на бумажном самописце с использованием термобумаги, чтобы геодезист мог определить точность зондирования.SBES может использовать различные частоты сонара; обычно 200 кГц используется на мелководье до 100 м. Поскольку затухание звука в воде уменьшается на более низких частотах, 24–33 кГц обычно используется для более глубоких исследований воды. Часто две частоты объединяются для удобства в один двухчастотный преобразователь, например 33/200 кГц. Для съемок, когда взвешенные частицы очень высоки, обычно во время дноуглубительных работ, низкочастотный гидролокатор может проникать в толстый ресуспендированный слой и измерять ненарушенное твердое дно под ним.Датчики могут быть выбраны с различной шириной луча, которая определяет размер отпечатка эхо-сигнала внизу. Преобразователи с более узким лучом обеспечивают меньшую зону облучения и, следовательно, обеспечивают измерение глубины в более дискретной точке под исследовательским судном. Для определения точного положения нижних элементов желательны более узкие преобразователи ширины луча. Недорогие эхолоты могут иметь очень большую ширину луча, что не дает возможности точного измерения глубины. Преобразователи с более низкой частотой обычно имеют более широкую ширину луча, чем преобразователи с высокой частотой; преобразователь должен быть больше, чтобы генерировать направленный луч при уменьшении частоты.Однолучевые эхолоты обеспечивают значительную экономию затрат по сравнению с системами многолучевых эхолотов и особенно полезны на очень мелководье, на глубине менее 5-10 метров. Результаты однолучевых эхолотов легче интерпретировать, гораздо меньше времени на редактирование, а оборудование SBES может эксплуатироваться менее опытным персоналом.

.

SyQwest - однолучевые эхолоты

Гидрографические эхолоты используются для измерения глубины морского дна с использованием свойств акустических волн. Принцип действия эхолотов является основным - путем измерения времени двустороннего распространения акустических волн, передаваемых на поверхность моря, и волн, отраженных от морского дна.

Эхолоты подразделяются на два типа; Однолучевой эхолот (SBES) и многолучевой эхолот (MBES). Названия «одиночный» и «множественный» связаны с количеством измерений точек глубины, собранных одновременно.

Однолучевые эхолоты (SBES)

Syqwest Inc. предлагает полную линейку высококачественных доступных однолучевых эхолотов на выбор для приложений гидрографической съемки.

Системы

SBES были разработаны около 80 лет назад и внесли значительный вклад в важные первичные океанографические открытия и разработки. SBES все еще широко используются при гидрографических съемках. SBES может измерять только одну точку на каждую излучаемую акустическую эхо-волну (эхо).Характеристики SBES определяются углом луча и частотой передаваемой акустической волны от преобразователя, а также многими другими параметрами сонара, которые могут быть выбраны для обеспечения возможностей глубины воды от менее 1 метра до полной глубины океана.

Руководство по выбору продукции

Продукт Глубина воды Встроенная запись термограммы
Бат 500-HD <= 1000 метров Есть
Bathy 500-HD ДВОЙНОЙ <= 1000 метров Есть
HydroBox HD SC / DF <= 1000 метров Нет
EchoBox / B1500 C <= 5000 метров Нет
Бат-2010 Полная глубина океана Нет

.Однолучевой эхолот

, однолучевой эхолот Поставщики и производители на Alibaba.com

Модель ES100S Дисплей 8 & rsquo; & rsquo; Цветной ЖК-экран TFT Число пикселей 800x600 Обработка Цифровая обработка сигналов (DSP) Частота 200 кГц (опционально, одиночный или двойной преобразователь) Выходная мощность 300 ~ 600 Вт Источник питания 12 ~ 36 В постоянного тока Точность 0,1 м Минимальный слепой диапазон 0,2 м 0 ~ 500 м Автоматический диапазон ВЫКЛ / ВКЛ Auto Gain OFF / L / M / H A-Mode OFF / ON Тревога глубины OFF / In Range / Out Range Alarm Voltage OFF / ON Режим расширения OFF / Auto / Manual / Bottom Lock Expansion Rate X2, X4, X8, XR (Actual Разрешение) Цвет 256 цветов Цвет фона 8 цветов Скорость развертки 7 шагов (стоп, 1/8, 1/4, 1/2, x1, x2, x3) Единица глубины Метры (м), футы (футы), фатом (fa) Линия шкалы ВЫКЛ. / ВКЛ. Беспорядок Да STC ВЫКЛ. / L / M / H TX Power OFF / L / M / H Функция хранения и воспроизведения на SD-карте, обновление программного обеспечения Входная информация GPS NMEA (GGA, RMC, VTG) Выходные данные глубины NMEA (DPT) , DBT) Язык Китайский, английский, корейский, вьетнамский Температура -10 ° C ~ 40 ° C Характеристики: l Технология DSP Принятие технологии высокоточной обработки цифрового сигнала (DSP) l Обнаружение минимального слепого поля 0.Сверхнизкий уровень воды 2 м l Цветной ЖК-дисплей высокого разрешения с разрешением 640x480 обеспечивает четкое изображение l Цветной ЖК-экран TFT Подходит для плавания при солнечном свете и ночью l Независимая регулировка усиления Полностью независимое управление усилением двух каналов l Хранение и воспроизведение карты данных SD эхо-данные и быстро обновляемое программное обеспечение

.

глубин воды эхолотов с одиночным эхолотом частоты Хд370 эхолотом одиночным эхолотом

Эхолоты для всех глубин воды С ОДНОЙ ЧАСТОТОЙ HD-LITE HD-MAX ECHO SOUNDER однолучевой эхолот

HD-LITE ECHO SOUNDER ХАРАКТЕРИСТИКИ:

    Оптимизированная скорость звука Промышленный компьютер Платформа
  1. Удобное для пользователя программное обеспечение для съемки и навигации

КОМПАКТНЫЙ ОДНОЛУЧНЫЙ ЭХОЗОНДЕР HD-LITE

Мощность Глубина
Частота 200 кГц
800 Вт 0.15-160 м
Разрешение +/- 10 мм + 0,1% h, 1 см
Углубление 0,0 м - 15 м
Диапазон громкости 1370-1700 м / с, разрешение 1 м / с
CPU 1,92 ГГц, DUAL CORE
Память 2G
Частота дискретизации 30 Гц
Хранилище 16G SSD
Дисплей 38,1 см
Разрешение 1280x1024 @ 60 Гц
Интерфейс 2 * RS232
3 * USB
VGA Доступен
Температура -20 ~ 70
Вес 5.8 кг

iBeam8120 Multibeam ECHO SOUNDER

Широкоугольный охват до 130 градусов

Стабилизация крена в реальном времени, максимально удобная для использования

Компактная интегрированная конструкция

и простая сборка программное обеспечение

Частота 200 кГц
Swatj Cpverage 30-130 градусов
Мощность 800w
Диапазон глубины 0.15-160 м
Разрешение 1 см
Угол Поперечный угол луча 2 градуса
Угол продольного луча 1,5 градуса
Количество лучей 512
Глубина рейтинг 50 м
Диапазон 0,5-300 м
Частота эхо-запросов До 30 Гц
Рабочая модель эквиагулярная модель
эквидистантная модель
Стабилизация крена +/- 10 градусов
Входное напряжение 220 В перем. Тока / 50 Гц
Мощность 200 Вт
Длина кабеля датчика стандартная 15 м (опция)
Вес датчика 12.5 кг. .

CEE ECHO- Однолучевой эхолот высокого разрешения

Эхолоты CEE ECHO ™ и CEESCOPE ™ могут регистрировать результаты зондирования с частотой до 20 Гц, обеспечивая исключительную детализацию дна вдоль маршрута исследования. В дополнение к выходной глубине зондирования, полный возврат эхо-сигнала сонара от каждого эхо-сигнала оцифровывается в 3200 отдельных и дискретных значений от чуть ниже поверхности до нижнего уровня. Регистрируется интенсивность отраженного эха от всей толщи воды и от дна, а не только одно значение глубины зондирования для каждого сигнала.Когда дело доходит до проверки качества данных в режиме реального времени и после завершения съемки, запись эхограммы имеет решающее преимущество перед базовыми эхолотами, которые выдают только цифровое значение глубины. Например, густая донная растительность может быть идентифицирована на эхограмме и отличаться от истинного дна - процесс, который может быть невозможен с обычным эхолотом.

Изображения вверху: Густая подводная растительность. Записано в HYPACK® с помощью одночастотного преобразователя 200 кГц.

Изображение снизу: Отложения отложились за затопленной стеной. Записано в HYPACK® с помощью двухчастотного преобразователя 33/200 кГц.

.

Однолучевой эхолот CEEPULSE

- Насколько прочен CEEPULSE ™?

Благодаря толстой оболочке и исключительно надежным компонентам CEEPULSE ™ трудно повредить.

- Какая максимально достижимая глубина?

100 м с датчиком 200 кГц.

- Как подключить CEEPULSE ™?

Преобразователь и разъемы питания / данных такие же, как и у всех других эхолотов CEE HydroSystems. Y-образный кабель питания / данных заканчивается стандартным последовательным разъемом DB9 и гибким кабелем питания.

- Как он питается?

Используйте любой источник питания 12-24 В DV.

- Какие данные выводятся?

CEEPULSE ™ может выводить данные общих форматов, такие как DESO25, Odom SBT, NMEA0183.

- Как работает эхолот?

Включите питание, и эхолот немедленно начнет пинговать, при этом светодиод питания и данных мигает один раз за пинг.

- Нужен ли мне компьютер для приобретения?

Да. CEEPULSE ™ не регистрирует данные.

- Есть ли вывод данных Bluetooth?

Да.Ввод и вывод. CEEPULSE ™ может выводить данные Bluetooth на ПК, планшет или полевой сборщик данных. Чтобы изменить настройки CEEPULSE ™, просто установите соединение Bluetooth и откройте программный портал CEEPULSE CONNECT.

- Могу ли я при необходимости изменить настройки эхолота?

Да. С помощью программного портала CEEPULSE CONNECT и кабеля RS232 или соединения Bluetooth. Максимальная глубина, расстояние гашения, усиление, ширина импульса и порог обнаружения могут быть отрегулированы вручную.

- Могу ли я ввести скорость звука (SV)?

Да.Это вводится с помощью программного портала.

- Могу ли я использовать имеющийся у меня датчик?

Может быть. Мы можем поставить соединительные кабели для некоторых типов разъемов.

- Может ли CEEPULSE ™ принимать GPS?

Нет. CEEPULSE ™ - это автономный эхолот.

.

Смотрите также