Корзина
Пока пусто
 

Определение атмосферного давления


Атмосферное давление. Урок 13

Земля путём силы гравитации притягивает к себе молекулы воздуха. Они имеют вес, а значит создают давление как внутри самой атмосферы, так и на её границе с различными телами на земной поверхности. Атмосферное давление – это сила, с которой воздух давит на земную поверхность и на все находящиеся на ней предметы.

Атмосферное давление изменяется с высотой и зависит от погодных условий: температуры воздуха и перемещения воздушных масс в вертикальном направлении (конвекции). Вблизи земной поверхности оно приблизительно равно 105 Па (в интернациональной системе (СИ) давление измеряется в Паскалях – русское Па, международное – Pa).

За нормальное атмосферное давление принято давление ртутного столба высотой 76 см сечением в 1 см2 на уровне моря на широте 45° при температуре 0°С. Оно равно 760 мм рт. ст.(101325 Па, но реально берётся 100 000 Па) – это 1 атмосфера (атм.).


<!— Реклама —>

Атмосферное давление по-традиции измеряют в миллиметрах ртутного столба, современные аналоги этой меры – миллибары и гектопаскали. Один Паскаль – это давление силой в 1 Ньютон (Н), приходящееся на площадь 1 м2.

Интересно, что среднее давление атмосферы на поверхности Марса в 160 раз меньше, чем у поверхности Земли.

Как заметить атмосферное давление?

Хотя молекулы газа не имеют запаха и цвета, они постоянно взаимодействуют с рецепторами нашей кожи, сдавливают со всех сторон все предметы, заполняют пустоты, а их быстрое перемещение в горизонтальном направлении, называемое ветром, может сбить нас с ног. Доказать, что атмосферное давление существует, можно при помощи простых опытов.

Опыт 1 – «Непроливайка»

В стакан налить воды до краёв. Прикрыть его листком плотной бумаги и, придерживая бумагу ладонью, быстро перевернуть стакан кверху дном. Убрать ладонь. Вода из стакана не выльется, так как на бумагу снизу давит атмосфера.

Объяснение: фраза «на нас давит столб атмосферного воздуха», иногда употребляемая, в том числе и в школьных учебниках, некорректна. Она произносится по ассоциации с силой давления, действующей со стороны твёрдого тела. Эта сила действует на тела, расположенные ниже, и не действует на тела сбоку или, тем более, сверху данного тела. Иное дело давление жидкости или газа.

По закону Паскаля давление передаётся не только в точки на дне сосуда, но также и в точки на стенках и крышке. Силы гидростатического и атмосферного давлений действуют перпендикулярно произвольно ориентированной поверхности тела, контактирующей со средой, и могут иметь любое направление.

Воздух, давящий на бумагу снизу наполненного стакана – это доказательство несостоятельности такой ассоциации. Интересно, что если стакан наполнить водой только наполовину, то оставшийся воздух будет давить с такой же силой, как и наружный, и бумага не удержит воду (и воздух) в стакане.

Опыт 2 – «Сухим из воды»

Положить на плоскую тарелку монету или металлическую пуговицу и налить воды. Монета окажется под водой. Наша задача – выловить монету голыми руками, не замочив их.

Зажгите внутри сухого стакана бумагу и, когда воздух нагреется, опрокиньте стакан на тарелку рядом с монетой так, чтобы монета не очутилась под стаканом. Ждать придётся недолго. Бумага в стакане сразу погаснет, и воздух начнёт остывать. По мере его остывания вода будет втягиваться стаканом и вскоре вся соберётся там, обнажив дно тарелки.

Объяснение: когда воздух в стакане нагрелся, он расширился, как и все нагретые тела, избыток его нового объёма вышел из стакана. Когда же оставшийся воздух начал остывать, его стало недостаточно, чтобы в холодном состоянии оказывать прежнее давление, уравновешивать наружное давление атмосферы. Теперь вода под стаканом испытывает на каждый сантиметр своей поверхности меньшее давление, чем в открытой части тарелки. Неудивительно, что она вгоняется под стакан, втискиваемая туда избытком давления наружного воздуха. Вода вдавливается воздухом!

По этой же теме посмотрите эксперимент программы «Галилео».

Почему мы не чувствуем атмосферное давление?

Зная, что 1 м3 воздуха при температуре 0° на уровне моря весит 1,3 кг, легко подсчитать, что на крышу дома, имеющую площадь, например 100 м², атмосфера давит с силой 107 Н, что соответствует весу тела массой 1000 т. Однако крыша дома не проваливается.

Площадь спины лежащего на пляже человека заведомо больше 0,2 м2; следовательно, атмосфера давит на спину человека с силой, большей чем 20 000 Н, что соответствует камешку массой 2 т. Однако человек вообще не ощущает никакого давления сверху.

Опыт «Сухим из воды» демонстрирует нам ещё и доказательство внутреннего давления, уравновешивающего наружное давление атмосферы.

Мы не чувствуем давления воздуха, потому что давление атмосферы равномерно распределяется со всех сторон и потому что внутри нас есть такое же давление воздуха и жидкости, а адаптационные способности организма постоянно уравновешивают внутреннее давление, подстраивая его под изменение атмосферного. Но адаптации проходят только в небольшом интервале. 

Если люди живут длительное время на большой высоте, то их организм приспосабливается как к меньшему количеству кислорода, так и к более низкому давлению. Самые высокогорные поселения мира:

Посёлок золотоискателей Ла Ринконада-Ананея, 5100 м.
Автор: IJISCAY

А вот рыбы, живущие на глубине океана, привыкли к более высокому давлению, и быстро перестроиться их организм не способен. Их тело адаптировалось к нему, и внутреннее давление его намного выше 1 атм. Поэтому когда их достают из глубины, они взрываются из-за высокого внутреннего давления. То же произошло бы и с человеком в безвоздушном пространстве (в космосе).

Фильм по теме «Атмосферное давление и самочувствие человека».

Из истории открытия знаний о весе, давлении воздуха и изобретении барометра

О том, как измерить атмосферное давление, догадался итальянский математик и физик, выпускник иезуитского колледжа Э. Торричелли. Вместе с В. Вивиани – юным учеником Галилея – он провёл опыты по его измерению. Торричелли тоже был одним из последних учеников Галилея, и основываясь на его догадках доказал, что воздух имеет вес и оказывает давление.

Эванжелиста Торричелли и его барометр.
Автор: Saperaud~commonswiki

Торричелли впервые открыто выступил против догм Аристотеля. Рассуждая о насосе, он заявил, что

«прежде всего вода поднимается вслед за поршнем вовсе не потому, что «природа боится пустоты», просто воду гонит в насос давление, которое оказывает воздух на поверхность реки. В трубе же насоса, под поршнем, воздуха нет, поэтому вода входит в неё до тех пор, пока вес водяного столба в трубе насоса не уравновесит наружное давление воздуха».

Но доказал он это немного позже. Предложенный им опыт был осуществлён в 1643 г. В этом опыте использовалась запаянная с одного конца стеклянная трубка длиной около 1 м. Её наполняли ртутью и, закрыв пальцем (чтобы ртуть не выливалась раньше времени), перевернув, опускали в широкую чашку со ртутью.

Часть ртути из трубки выливалась, и в её верхней части образовывался вакуум (первая настоящая пустота, обнаруженная на Земле – Торричеллиева пустота). При этом высота столба ртути в трубке оказалась равной примерно 760 мм (если отсчитывать её от уровня ртути в чашке). Воздух давил на ртуть чашки и не давал вылиться из трубки.

Учёный также догадался, что давление атмосферы связано с изменением погоды. Наблюдая за высотой ртутного столба в трубке, Торричелли заметил, что атмосферное давление непостоянно и зависит от «теплоты или холода». Столбик в трубке то опускался, то поднимался, указывая на нужное деление шкалы. Вот почему в качестве одной из единиц давления взят миллиметр ртутного столба (мм рт. ст.). Тяжесть по-гречески «барос», и прибор Торричелли стали называть барометром.

Принцип действия барометра Торричелли

О давлении и весе воздуха почти одновременно с Торричелли догадался и другой известный учёный того времени – Декарт. Он объяснил, почему из продырявленного на дне флакона при закрытой крышке духи не вытекают, а при открытой вытекают, именно разностью в давлении воздуха на разные площади поверхности. Когда крышка флакона закрыта, поверхностное натяжение воды на небольшом отверстии способно удерживать жидкость во флаконе. При открытой крышке оно преодолевается силой давления воздуха и духи начинают вытекать. Декарт выдвинул гипотезу, что с высотой воздух становится реже, а значит, должно уменьшаться и его давление.

Уже после опытов Торричелли Декарт поручил талантливому французскому математику и физику Блезу Паскалю проверить его догадку – верно ли, что давление с высотой убывает. Для этого он должен был подняться в горы с трубкой Торричелли. Опустившийся вниз столбик ртути на высоте горы Пюи де Дом подтвердили гипотезы Торричелли и Декарта.

Паскаль сделал вывод:

«законы давления жидкостей, известные ещё со времён славного Архимеда и развитые голландцем Симеоном Стевином, во многом справедливы и для воздуха». 

Давление воздуха не замечается человеком, потому что по законам давления в жидкостях и газах оно направлено и в стороны, и вниз.

Как измеряют атмосферное давление?

Барометр Торричелли используют до сих пор. Этот простой прибор помогает определить примерную высоту над уровнем моря. Альпинисты берут его с собой высоко в горы. Барометр – обязательный прибор кабины каждого летательного аппарата, будь то самолёт или спутник Земли. В наши дни его «братья» спускаются и на дно морей. Из высотомеров они превратились в глубиномеры.

За три с лишним века барометры изменились: стали автоматическими, самозаписывающими, научились управлять другими механизмами.

Ртутный барометр измеряет атмосферное давление с наибольшей точностью

Старые ртутные барометры.
Автор: GianniG46

На метеорологических станциях давление атмосферного воздуха измеряют всё те же ртутные барометры, так как они обладают наибольшей точностью. Они работают по тому же принципу, что и изобретение Торричелли.

При измерении величины давления вводят поправки на температуру, так как при повышении температур, ртуть и шкала барометра расширяются. На практике пользуются готовой таблицей поправок, которая сразу же даёт нужную величину.

Мембранные барометры

Для измерения атмосферного давления применяют также мембранные манометры. Простейший мембранный манометр показан схематически на рис 1.

Рис. 1. Мембранный барометр

Тонкая упругая пластинка-мембрана 1 герметически закрывает коробку 2, из которой откачана часть воздуха. С мембраной соединён указатель 3, поворачивающийся около О на угол, зависящий от степени прогиба мембраны, которая в свою очередь зависит от разности измеряемой силы давления воздуха вне коробки и внутри коробки.

Такие манометры называют барометрами-анероидами. Их градуируют и выверяют по ртутному барометру. Они менее точны, зато более удобны в обращении, поскольку не содержат ртути. При определении давления анероидом вносятся три поправки (на шкалу, на температуру и дополнительная на прибор), указанные в сертификате прибора. Анероид может давать надежные показания только в том случае, если он время от времени подвергается тщательной проверке.

Барометр-анероид.
Изображение Wolfgang Eckert с сайта Pixabay

Анероид может быть градуирован непосредственно на высоту атмосферы. Такие анероиды называют альтиметрами; или высотомерами, они используются в авиалайнерах и позволяют пилоту контролировать высоту полёта.

Высотомер Булова Б-11, с самолёта-истребителя.
Автор: Дозиметр

Для непрерывной регистрации изменения атмосферного давления применяется самопишущий прибор — барограф . Приёмной частью барографа является несколько соединённых между собой малых анероидных коробок.

Другие приборы

Гипсотермометр (гипсометртермобарометрбаротермометр) — прибор для измерения атмосферного давления по температуре кипящей жидкости (обычно воды). Он более точен, чем анероид.

Состоит из кипятильника и термометра со шкалой, разделённой на 0°,01. Этот прибор обычно применяется в экспедиционных условиях для барометрического нивелирования.

Штормгласс – это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.
<!— Реклама —>

Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому штормгласс также называют «Барометром Фицроя». В 1831–1836 гг. Фицрой возглавлял океанографическую экспедицию на корабле «Бигль», в которой участвовал Чарльз Дарвин.

Весной и осенью резкое падение показателей барометра предвещает ветреную погоду. Летом, в сильную жару, оно предупреждает о грозе. Зимой, особенно после продолжительных морозов, быстрое падение ртутного столба говорит о предстоящей перемене направления ветра, сопровождающейся оттепелью и дождём. Напротив, повышение ртутного столба во время продолжительных морозов предвещает снегопад.

Закономерности в изменении атмосферного давления и способ использования этих знаний

Почти вся масса атмосферы Земли сосредоточена в слое высотой примерно до 50 км. По достижении высоты 50 км ускорение свободного падения уменьшается всего лишь на 1,5% по сравнению с ускорением на уровне моря; поэтому можно принять, что в пределах всего 50-километрового слоя атмосферы ускорение свободного падения остается равным g = 9,8 м/с2.

Представляя атмосферный воздух в виде сплошной среды, мы, конечно, не должны забывать, что в действительности это газ. Давление — статистическая величина, выражаемая через усреднённый по многим молекулам квадрат скорости их хаотического движения. Сила давления на любую реальную или мысленно выделенную площадку в газе обусловлена хаотической бомбардировкой этой площадки множеством молекул.

Давление понижается с высотой и повышается при спуске в глубокие шахты. Причина – в разрежении  воздуха (уменьшении плотности) с подъёмом и уплотнении со спуском, ведь он притягивается землёй и около неё сосредоточена основная его масса. В нижней тропосфере давление с высотой уменьшается примерно на 1 мм на каждые 10,5 м. Это позволяет с помощью барометра-высотомера определять высоту места.

Как изменяется атмосферное давление с высотой?

На самом деле эта закономерность соблюдается только до высоты  в 1 км. Расстояние в метрах, на которое надо подняться или опуститься, чтобы атмосферное давление изменилось на 1 мб, называется барической ступенью. Барическая ступень на высоте от 0 до 1 км составляет 10,5 м, от 1 до 2 км – 11,9 м, на высоте 2-3 км барическая ступень равна 13,5 км. Величина барической ступени зависит от температуры. В тёплом воздухе она больше. Более точно барометрическая формула описана тут: https://ru.wikipedia.org/wiki/

На практике же часто пользуются особыми таблицами, которые позволяют более или менее приблизительно получать данные о высотах. Но для решения задач, не требующих высокой точности, можно пользоваться и средним значением. Можно оценить давление по разности высот, высчитать высоту по разности давления.

Задача 1

Альпинисты поднимаются на гору, высота которой 5100 м. У подножия горы давление составляет 720 мм рт. ст. Какое давление будет на вершине?

Решение:

При подъёме на 10,5 м давление снижается на 1 мм рт. ст.

1) Узнаем, на сколько мм. рт. ст. снизится давление при подъёме на эту гору. 5100:10,5=486 (на 486 мм рт. ст.)

2) Узнаем, каким будет давление на вершине. 720-486=234 (мм рт. ст.)

Ответ: На вершине будет давление в 234 мм рт. ст.

Задача 2

Определите, на какой высоте летит самолёт, если за бортом давление 450 мм рт. ст., а у поверхности Земли 750 мм рт. ст.

1) Определяем разность в давлении. 750-450=300 мм рт. ст. – столько раз по 10,5 метров поднялся самолёт.

2) Узнаем, на сколько метров поднялся самолёт. 10,5  Х  300 = 3150 (м)

Ответ: самолёт на высоте 3150 м.

Задача 3

У подножия холма барометр показывает давление – 761 мм рт. ст., а на вершине – 761 мм рт. ст. Чему равна высота холма?

Задача решается по тому же принципу, что и предыдущая.

1) 761-750=11 (мм рт. ст.)

2) 11 Х 10,5 = 115,5 (м)

Ответ: высота холма равна 115,5 м.

Атмосферное давление постоянно изменяется

Плотность воздуха зависит от температуры, температура же и является главной причиной изменения давления воздуха. Давление тёплого воздуха меньше, чем холодного. Это объясняется тем, что при нагревании воздух, как и все предметы, расширяется, его объём увеличивается и он перетекает в верхние слои на место менее нагретого воздуха, что приводит к уменьшению давления около земной поверхности.

На климатических и синоптических картах точки с одинаковыми показателями давления, приведённые к уровню моря, соединяют изолиниями, называемыми изобарами. Изобары бывают замкнутыми и незамкнутыми. Система замкнутых изобар с пониженным давлением в центре (Н) называется барическим минимумом, или циклоном. Система замкнутых изобар с повышенным давлением в центре (В) называется барическим максимумом, или антициклоном. Незамкнутые системы изобар – барический гребень, ложбина и седловина.

Все барические области делят на две группы: постоянные и сезонные (сохраняют характерные особенности давлений в течение определенного периода года).

Пояса давления на Земле

Давление на Земле распределяется зонально. В обобщённом виде эту зональность представляют в виде поясов:

Пояса атмосферного давления на Земле

На самом деле реальная картина распределения давления на поверхности земли гораздо сложнее.

Постоянные барические области

Постоянным остаётся экваториальный пояс пониженного давления, только смещая ось вслед за Солнцем. В июле она перемещается в Северное полушарие на 15-20° с. ш., в декабре – в Южное, на 5° ю. ш. Зимой над океаном и над сушей возникает сплошной пояс повышенного давления. Летом повышенное давление сохраняется над океанами, а над сушей образуется термическая депрессия и понижение давления. Постоянны и барические максимумы Антарктиды и Гренландии.

Над незамерзающими океанами и тёплыми течениями умеренной зоны и зимой и летом ярко выражены барические минимумы:

Сезонные барические области

30-40° широты

Только зимой тут действительно наблюдается пояс высокого давления. Летом над материком оно становится низким, а над океанами, прогревающимися медленно, давление остаётся высоким и даже повышается. Другими словами барические максимумы в течение всего года здесь сохраняются только над океанами:

Умеренные и субполярные

В умеренных и субполярных широтах северного полушария, где чередуются океаны и материки, давление над сушей и водой различное, особенно зимой. Над сушей летом – минимум, а зимой – максимум. Летом же во всём поясе давление пониженное. Зимой над охлаждёнными материками давление высокое, здесь возникают сезонные барические максимумы:

Суточное колебание давления атмосферы

Наблюдается и суточное колебание давления. Ночью наблюдается один максимум, а днём – один минимум. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня.

Изменение давления в течение суток связано с температурой воздуха и зависит от её изменений. Годовые изменения зависят от нагревания материков и океанов в летний период и их охлаждения в зимнее время. Летом область пониженного давления создается на суше, а область повышенного давления над океаном.

Минимальная величина атмосферного давления – 641,3 мм рт.ст или 854 мб  – была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная – 815,85 мм рт.ст. или 1087 мб – в Туруханске зимой. Максимальное давление в России зарегистрировано в Красноярском крае в 1968 г – 870 мм рт. ст.

Все барические системы оказывают большое влияние на воздушные течения, погоду и климат на значительных территориях. О вызываемых ими ветрах мы поговорим в следующий раз.

Тест для закрепления изученного материала

Источники:

  1. Томилин А. Н., Теребинская Н. В. Для чего ничего? Очерки. /Л., «Дет. лит.», 1975.
  2. Я. И. Перельман. Занимательные задачи и опыты. — М.: «Детская литература», 1972.
  3. Физическая география: Справ. пособие для подгот. отд. вузов/Г. В. Володина, И. В. Душина, С. Г. Любушкина и др.; Под ред. К. В. Пашканга — М.: Высш. шк., 1991.
  4. Тарасов Л. В. Атмосфера нашей планеты. — М.: ФИЗМАТЛИТ, 2012.
  5. Савцов Т. М. Общее землеведение: Учеб. пособие для студ. высш. пед. учеб. заведений — М.: Издательский центр «Академия», 2003
  6. Дронов В. П. Землеведение. 5-6 кл.: Учебник/В. П. Дронов, Л. Е. Савельева. 5-е изд., стереотип. — М.: Дрофа, 2015.
  7. География 5-6 классы: учеб. для общеобразоват. учреждений / А. И. Алексеев, Е. К. Липкина, В. В. Николина и др.; Под ред А. И. Алексеева. — М.: Просвещение, 2012.

Вам будет интересно

Описание приборов измерения атмосферного давления

19.06.2015

Давление воздуха изменяется в широких пределах. Если оно больше 760 миллиметров ртутрного столба, то считается повышенным, если меньше – то пониженным.

Наблюдения за изменением атмосферного давления позволяют предсказывать погоду. Например, при повышении давления в зимний период погода становится морозней, а летом – жаркой. Пониженное атмосферное давление способствует появлению облачности, выпадению осадков. Поэтому постоянно знать величину атмосферного давления и контролировать его изменения необходимо не только ученым, медикам, но и всем нам.

Атмосферное давление

Атмосферное давление измеряется в миллиметрах ртутного столба, а также в Паскалях и гектоПаскалях. Принято считать нормальным давление, которое равно 760 мм рт. ст. (1013,25 гПа) .

Атмосферное давление, как правило, изменяется в зависимости от изменений погодных условий. Зачастую давление падает перед ненастной погодой, повышается – перед хорошей. Ведение учета изменения давления позволяет определить перемещение циклонов и направление ветров.

На самочувствие человека, проживающего долгое время в определенной местности, изменение характерного давления зачастую не влияет. В случаях, когда происходят непериодические колебания атмосферного давления, даже у здоровых людей появляется головная боль, падает работоспособность и ощущается тяжесть тела.

Изменение атмосферного давления также влияет на многие технологические процессы. Например, при переработке нефтепродуктов, где давление является одним из основных контролируемых технических параметров; хлебо-булочное производство, где показания давления сильно влияют на влажность полуфабрикатов из теста; в авиационной промышленности это очень важный параметр, оказывающий влияние на сроки и условия эксплуатации.

Приборы для измерения атмосферного давления

На сегодняшний день существует несколько видов барометров, с помощью которых осуществляют измерение давления воздуха:

Ртутные барометры являются более точными и надежными по сравнению с анероидами, по ним проверяют работу других видов барометров. Высота давления в них определяется по высоте столба ртути. Метеорологические станции оборудованы чашечными барометрами.

Измерение атмосферного давления с помощью термогигрометра

Атмосферное давление измеряется не только с помощью различных видов барометров, но и такими универсальными цифровыми приборами, как термогигрометры. Несмотря на то, что основная задача данных устройств – определение относительной влажности и температуры, они прекрасно справляются и с измерением давления воздуха, показывая максимально точные величины. Поэтому такие многофункциональные приборы приобрести намного выгоднее, чем устаревшие барометры и психрометры.

АО «ЭКСИС» предлагает Вашему вниманию огромный ассортимент электронных измерителей давления и других контрольно-измерительных приборов высокого качества и всегда по доступным ценам.  

В частности, в нашей копании Вы сможете приобрести следующие модели термогигрометров:

Все модели термогигрометров имеют интерфейс связи с ПК посредством USB, RS-232 и могут крепиться к стене.

 

Атмосферное давление — урок. География, 7 класс.

Атмосферное давление — сила, с которой воздух давит на земную поверхность.

На каждый квадратный сантиметр поверхности земли воздух оказывает давление в \(1,033\) кг. Человек не ощущает атмосферного давления, так как оно уравновешивается его внутренним давлением.

 

 

Атмосферное давление измеряют при помощи барометра (от греческого барос — «тяжесть», метрон — «мера»). Барометры бывают ртутные и анероиды. Существуют и самопишущие приборы, которые непрерывно записывают значения атмосферного давления — барографы.

 

Единицами измерения атмосферного давления являются миллиметры ртутного столба (мм рт. ст.) или гектопаскали (гПа).

Нормальным считается давление, равное \(760\) мм рт. ст. (\(1013\) гПа). Если давление ниже \(760\) мм рт. ст., его считают пониженным, если выше — повышенным.

Конспект "Атмосферное давление" - УчительPRO

«Атмосферное давление»

Воздух, как и любое тело, имеет массу: 1 л воздуха на уровне моря имеет массу около 1,3 г. На каждый квадратный сантиметр земной поверхности атмосфера давит силой 1 кг. Это среднее давление воздуха над уровнем океана у широты 45° при температуре 0 °С отвечает весу ртутного столбика высотой 760 мм и сечением 1 см2 (или 1013 мб.). Это давление принимают за нормальное атмосферное давление.

Атмосферное давление – это сила, с которой атмосфера давит на все находящиеся в ней предметы и на земную поверхность. Давление определяется в каждой точке атмосферы массой вышележащего столба воздуха с основанием, равным единице. С увеличением высоты атмосферное давление уменьшается, т. к. чем выше расположена точка, тем меньше над ней высота воздушного столба. С поднятием вверх воздух разрежается и его давление уменьшается. В высоких горах давление значительно меньше, чем на уровне моря. Эту закономерность используют при определении абсолютной высоты местности по величине давления.

Барическая ступень – расстояние по вертикали, на котором атмосферное давление уменьшается на 1 мм рт. ст. В нижних слоях тропосферы до высоты 1 км давление уменьшается на 1 мм рт. ст. на каждые 10 м высоты. Чем выше, тем давление понижается медленнее. В горизонтальном направлении у земной поверхности давление изменяется неравномерно, в зависимости от времени.

Барический градиент – показатель, характеризующий изменение атмосферного давления над земной поверхностью на единицу расстояния и по горизонтали.

Величина давления, кроме высоты местности над уровнем моря, зависит также и от температуры воздуха.

Давление теплого воздуха меньше, чем холодного, т. к. вследствие нагревания он расширяется, а при охлаждении – сжимается. С изменением температуры воздуха изменяется его давление.

Поскольку изменение температуры воздуха на земном шаре зонально, зональность характерна и для распределения атмосферного давления на земной поверхности. Вдоль экватора протягивается пояс пониженного давления, на 30—40° широтах к северу и югу – пояса повышенного давления, на 60—70° широтах давление снова пониженное, а в полярных широтах – области повышенного давления. Распределение поясов повышенного и пониженного давления связано с особенностями нагревания и движения воздуха у поверхности Земли. В экваториальных широтах воздух в течение всего года хорошо нагревается, поднимается вверх и растекается в сторону тропических широт. Подходя к 30—40° широтам, воздух охлаждается и опускается вниз, создавая пояс повышенного давления. В полярных широтах холодный воздух создает области повышенного давления. Холодный воздух постоянно опускается вниз, а на его место приходит воздух из умеренных широт. Отток воздуха в полярные широты – причина того, что в умеренных широтах создается пояс пониженного давления.

Пояса давления существуют постоянно.

Они лишь несколько смещаются к северу или югу в зависимости от времени года («вслед за Солнцем»). Исключение составляет пояс пониженного давления Северного полушария. Он существует только летом. Причем над Азией формируется огромная область пониженного давления с центром в тропических широтах – Азиатский минимум. Его формирование объясняется тем, что над огромным массивом суши воздух сильно прогревается. Зимой же суша, которая занимает значительные площади в этих широтах, сильно выхолаживается, давление над ней увеличивается, и над материками формируются области повышенного давления – Азиатский (Сибирский) и Северо-Американский (Канадский) зимние максимумы атмосферного давления. Таким образом, зимой пояс пониженного давления в умеренных широтах Северного полушария «разрывается». Он сохраняется только над океанами в виде замкнутых областей пониженного давления – Алеутского и Исландского минимумов.

Влияние распределения суши и воды на закономерности изменения атмосферного давления выражается также в том, что в течение всего года барические максимумы существуют только над океанами: Азорский (Северо-Атлантический), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский, Южно-Индийский.

Атмосферное давление непрерывно изменяется. Главная причина изменения давления – изменение температуры воздуха.

Давление атмосферы измеряется при помощи барометров. Барометр-анероид состоит из герметически замкнутой тонкостенной коробки, внутри которой воздух разрежен. При изменении давления стенки коробки вдавливаются или выпячиваются. Эти изменения передаются на стрелку, которая перемещается по шкале, градуированной в миллибарах или миллиметрах.

На картах распределение давления по Земле показывают изобарами. Чаще всего на картах указывают распределение изобар января и июля.

Распределение областей и поясов атмосферного давления существенно влияет на воздушные течения, погоду и климат.

 


Конспект урока «Атмосферное давление». Следующая тема:

Атмосферное давление - что это за показатель и зачем он нужен.

Что такое атмосферное давление?

Все тела во Вселенной имеют свойство притягиваться друг к другу. Крупные и массивные обладают более высокой силой притяжения по сравнению с мелкими. Этот закон присущ и нашей планете. Земля притягивает к себе любые объекты, которые на ней находятся, в том числе окружающую ее газовую оболочку – атмосферу. Хотя воздух намного легче планеты, он имеет большой вес и давит на всё, что находится на земной поверхности. Таким образом возникает атмосферное давление.

Что такое атмосферное давление?

Под атмосферным давлением понимают гидростатическое давление газовой оболочки на Землю и расположенные на ней объекты. На разной высоте и в различных уголках земного шара оно имеет различные показатели, но на уровне моря стандартным принято считать 760 мм ртутного столба.

Это означает, что на квадратный сантиметр любой поверхности оказывает давление воздушный столб массой 1,033 кг. Соответственно, на квадратный метр приходится давление более чем в 10 тонн.

О существовании давления атмосферы люди узнали только в XVII столетии. В 1638 году тосканский герцог решил приукрасить свои сады во Флоренции красивыми фонтанами, но неожиданно обнаружил, что вода в построенных сооружениях не поднимается выше 10,3 метров.

Решив выяснить причину подобного явления, он обратился за помощью к итальянскому математику Торричелли, который путем опытов и анализа определил, что воздух имеет вес.

Как измеряется атмосферное давление?

Атмосферное давление – один из важнейших параметров газовой оболочки Земли. Поскольку в разных местах оно различается, для его замеров используют специальное устройство – барометр. Обычный бытовой прибор представляет собой металлическую коробку с основанием из гофры, в которой напрочь отсутствует воздух.

При росте давления эта коробка сжимается, а при снижении давления, напротив, расширяется. Вместе с движением барометра двигается прикрепленная к нему пружинка, которая оказывает влияние на стрелку на шкале.

На метеорологических станциях используют жидкостные барометры. В них давление измеряют по высоте ртутного столбика, заключенного в стеклянную трубку.

Почему его измеряют?

Почему человечество измеряет атмосферное давление?

Поскольку атмосферное давление создается вышележащими пластами газовой оболочки, по мере повышения высоты оно изменяется. На него могут оказывать влияние как плотность воздуха, так и высота самого воздушного столба. Кроме того, давление меняется в зависимости от места на нашей планете. Это связано с тем, что разные районы Земли расположены на различных высотах над уровнем моря.

Кстати, время от времени над земной поверхностью создаются медленно передвигающиеся области повышенного или пониженного давления. В первом случае они носят название антициклоны, во втором – циклоны. В среднем показатели давления на уровне моря варьируются от 641 до 816 мм ртутного столба, хотя внутри торнадо могут опускаться до 560 мм.

Как атмосферное давление влияет на погоду?

Распределение атмосферного давления по Земле является неравномерным. Это связано с движением воздуха и его способностью создавать так называемые барические вихри.

В северном полушарии вращение воздуха по часовой стрелке приводит к образованию нисходящих воздушных потоков (антициклонов). Они приносят в конкретную местность ясную либо малооблачную погоду с полным отсутствием дождя и ветра.

Но если воздух вращается против часовой стрелки, то над землей образуются восходящие вихри. Они характерные для циклонов, с сильными осадками, шквальными ветрами, грозами. Кстати, в южном полушарии циклоны движутся по часовой стрелке, антициклоны – против нее.

Как оно влияет на человека?

На каждого человека давит воздушный столб массой от 15 до 18 тонн. В иных ситуациях такой вес мог бы раздавить всё живое, но давление внутри нашего организма равняется атмосферному. Поэтому при нормальных показателях в 760 мм ртутного столба мы не испытываем никакого дискомфорта.

Если же атмосферное давление выше или ниже нормы, некоторые люди (особенно пожилые или больные) чувствуют недомогание, головную боль, отмечают обострение хронических болезней.

Чаще всего неприятные ощущения человек испытывает на больших высотах (например, в горах), поскольку в таких районах давление воздуха ниже, чем на уровне моря.

Атмосферное давление, его виды и единицы измерения

Определение атмосферного давления весьма просто - это давление атмосферы на объекты, что находятся в ней, и на поверхность планеты. Другими словами, атмосферное давление - это давление отдельно взятого столба воздуха, что находится сверху, с площадью 1 метр квадратный.

Измерение атмосферного давления

Единицами измерения давления являются паскали, бары и миллиметры ртутного столба. Последнее применяется в барометрах (специальных измерительных приборах) и очень понятно обычным людям, поскольку барометрами пользуются многие. Многие знают, что 760 мм ртутного столба является нормальным давлением (таково атмосферное давление на уровне моря, потому оно и принято за норму). Только стоит добавить, что нормальным оно считается при температуре 0 °C.

Другая популярная единица измерения, часто применяемая в физике - паскали. Значение в 101325 Па называется нормальным давлением и эквивалентно 760 мм ртутного столба.

Ну а последняя единица измерения - бары. 1 бар = 100000 Па. В таком случае нормальным считается давление в 1,01325 бар.

Для упрощения подсчётов, в химии используется понятие стандартное атмосферное давление. Оно почти равно нормальному - 100000 Па (100 кПа) или 1 бар.

Нормальное атмосферное давление

760 мм ртутного столба барометра при температуре 0 °C - это нормальное давление. Именно такие значения выдаёт прибор на уровне моря. Именно от этого значения обычно и отталкиваются, приняв его за стандарт.

Кто-то слышал выражение одна атмосфера или три атмосферы, к примеру? Так вот, атмосферой в данном случае называют нормальное давление (то, о котором мы говорили выше). А вот давление, равное трём атмосферам, уже никак нормальным не назовёшь, ведь оно в три раза превышает норму.

Влияние атмосферного давления на погоду

Благодаря колебаниям атмосферного давления можно делать выводы о том, какая погода ожидается в ближайшем будущем. Правда, подобные прогнозы не могут похвастаться абсолютной точностью, поскольку зависит погода от многих параметров. К тому же, для разных регионов Земли характерно разное давление, из-за чего точный прогноз затруднителен.

Однако, определить ожидаемую погоду по показателям давления может любой человек. Так, если давление опускается ниже нормы, следует ожидать пасмурную, дождливую погоду. А если атмосферное давление поднимается выше нормы, следует ожидать солнечную погоду. Всё просто, не правда ли?

Правда, стоит понимать, что зимой ситуация несколько иная. Понижение давления говорит о повышенной влажности (возможно, будет снег), ожидается потепление. А повышение давления сулит нам ясную погоду, из-за чего стоит ожидать похолодания.

атмосферное давление | Определение и вариации

Атмосферное давление , также называемое барометрическим давлением , сила на единицу площади, действующая на столб атмосферы (то есть на всю массу воздуха над указанной областью). Атмосферное давление можно измерить с помощью ртутного барометра (отсюда обычно используется синоним барометрическое давление ), который указывает высоту столбика ртути, который точно уравновешивает вес столба атмосферы над барометром.Атмосферное давление также измеряется с помощью барометра-анероида, в котором чувствительный элемент представляет собой один или несколько полых, частично вакуумированных, гофрированных металлических дисков, поддерживаемых от сжатия внутренней или внешней пружиной; изменение формы диска при изменении давления может быть записано с помощью ручки пера и вращающегося барабана с часовым приводом.

изменения атмосферного давления с высотой

У поверхности Земли атмосферное давление уменьшается почти линейно с увеличением высоты.Однако изучение данных на больших высотах показывает, что зависимость экспоненциальная.

Encyclopædia Britannica, Inc.

Подробнее по этой теме

климат: атмосферное давление и ветер

Атмосферное давление и ветер являются важными факторами, влияющими на погоду и климат Земли. Хотя эти двое ...

Узнайте об атмосферном давлении, его единицах и методах измерения

Описание давления и его измерения.

© Josef Martha—sciencemanconsulting.com Посмотреть все видеоролики к этой статье

Атмосферное давление выражается в нескольких различных системах единиц: миллиметры (или дюймы) ртутного столба, фунты на квадратный дюйм (psi), дин на квадратный сантиметр, миллибар (мб), стандартные атмосферы или килопаскали. Стандартное давление на уровне моря по определению равно 760 мм (29,92 дюйма) ртутного столба, 14,70 фунта на квадратный дюйм, 1013,25 × 10 3 дин на квадратный сантиметр, 1013,25 миллибара, одной стандартной атмосфере или 101.325 килопаскалей. Вариации этих значений довольно малы; например, самые высокие и самые низкие когда-либо зарегистрированные давления на уровне моря составляют 32,01 дюйма (в центре Сибири) и 25,90 дюйма (во время тайфуна в южной части Тихого океана). Существующие небольшие колебания давления в значительной степени определяют характер ветра и шторма на Земле.

Узнайте, почему присоскам требуется внешнее атмосферное давление для давления на внутреннюю часть низкого давления.

Узнайте, почему отсутствие атмосферного давления в космическом вакууме делает присоски непригодными для использования.

Encyclopædia Britannica, Inc. Посмотреть все видео к этой статье

У поверхности Земли давление уменьшается с высотой со скоростью около 3,5 мбар на каждые 30 метров (100 футов). Однако над холодным воздухом падение давления может быть намного сильнее, потому что его плотность больше, чем у более теплого воздуха. Давление на высоте 270 000 метров (10 −6 мбар) сравнимо с давлением в лучшем из когда-либо созданных человеком вакууме. На высотах от 1500 до 3000 метров (от 5000 до 10000 футов) давление достаточно низкое, чтобы вызвать горную болезнь и серьезные физиологические проблемы, если не будет предпринята тщательная акклиматизация.

.

ГЛАВА 2. АТМОСФЕРНОЕ ДАВЛЕНИЕ

Ответ. Тропосфера содержит всю массу атмосферы, за исключением доли P (тропопауза) / P (поверхность), которая находится выше тропопаузы. Из Рисунок 2-2 мы читаем P (тропопауза) = 100 гПа, P (поверхность) = 1000 гПа. Таким образом, доля Ftrop от общей массы атмосферы в тропосфере составляет

. Тропосфера составляет 90% общей массы атмосферы на 30 ° с.ш. (85% в мире).

Доля Fstrat от общей массы атмосферы в стратосфере выражается долей над тропопаузой, P (тропопауза) / P (поверхность), минус доля над стратопаузой, P (стратопауза) / P (поверхность).Из Рисунок 2-2 мы читаем P (стратопауза) = 0,9 гПа, так что

Таким образом, стратосфера содержит почти всю массу атмосферы над тропосферой. Мезосфера содержит лишь около 0,1% общей массы атмосферы.

2,4 БАРОМЕТРИЧЕСКИЙ ЗАКОН

Мы рассмотрим факторы, управляющие вертикальным профилем атмосферной температуры в главах 4 и 7. Мы сосредоточимся здесь на объяснении вертикального профиля давления. Рассмотрим элементарный слой атмосферы (толщина dz, горизонтальная область A) на высоте z:

.

Рисунок 2-3 Вертикальные силы, действующие на элементарный слой атмосферы

Атмосфера оказывает восходящую силу давления P (z) A на нижнюю часть плиты и направленную вниз силу давления P (z + dz) A на верхнюю часть плиты; чистая сила, (P (z) -P (z + dz)) A, называется сила градиента давления.Поскольку P (z)> P (z + dz), сила градиента давления направлена ​​вверх. Чтобы плита находилась в равновесии, ее вес должен уравновешивать силу градиента давления:

(2.3)

Переставляем урожайность

(2,4)

Левая часть по определению равна dP / dz. Следовательно,

(2,5)

Итак, из закона идеального газа,

(2.6)

где Ma - молекулярная масса воздуха, T - температура. Подстановка (2,6) в (2,5) урожайность:

(2,7)

Сделаем упрощающее предположение, что T постоянна с высотой; как показано в Рисунок 2-2 , T изменяется только на 20% ниже 80 км. Затем мы интегрируем (2,7) чтобы получить

(2,8)

что эквивалентно

(2.9)

Уравнение (2,9) называется барометрический закон. Удобно определить шкала высоты H для атмосферы:

(2.10)

приводя к компактной форме Барометрического закона:

(2.11)

Для средней температуры атмосферы T = 250 K масштаб высоты H = 7,4 км. Барометрический закон объясняет наблюдаемую экспоненциальную зависимость P от z в Рисунок 2-2 ; из уравнения (2.11) , график зависимости z от ln P дает прямую линию с наклоном -H (проверьте, что наклон в Рисунок 2-2 действительно близко к -7,4 км). Небольшие колебания наклона Рисунок 2-2 вызваны колебаниями температуры с высотой, которые мы не учли в нашем выводе.

Аналогично можно сформулировать вертикальную зависимость плотности воздуха. Из (2,6) , ra и P связаны линейно, если T предполагается постоянным, так что

(2.12)

Аналогичное уравнение применяется к плотности воздуха na. На каждое увеличение высоты H давление и плотность воздуха падают в е = 2,7 раза; таким образом, H обеспечивает удобную меру толщины атмосферы.

При расчете высоты шкалы от (2.10) мы предположили, что воздух ведет себя как однородный газ с молекулярной массой Ma = 29 г / моль. Закон Дальтона гласит, что каждый компонент воздушной смеси должен вести себя так, как если бы он был один в атмосфере.Тогда можно было бы ожидать, что разные компоненты будут иметь разные шкала высоты определяется их молекулярной массой. В частности, учитывая разницу в молекулярной массе между N2 и O2, можно было ожидать, что соотношение смешивания O2 будет уменьшаться с высотой. Однако, гравитационное разделение воздушной смеси происходит за счет молекулярная диффузия, которая значительно медленнее, чем турбулентное вертикальное перемешивание воздуха на высотах ниже 100 км ( проблема 4. 9 ). Таким образом, турбулентное перемешивание поддерживает однородную нижнюю атмосферу.Только на высоте более 100 км начинает происходить значительное гравитационное разделение газов, причем более легкие газы обогащаются на больших высотах. Во время дебатов о вредном воздействии хлорфторуглеродов (ХФУ) на стратосферный озон некоторые не очень уважаемые ученые утверждали, что ХФУ не могут достичь стратосферы из-за их высокого молекулярного веса и, следовательно, низкого масштаба. В действительности турбулентное перемешивание воздуха гарантирует, что соотношения смешивания CFC в воздухе, поступающем в стратосферу, по существу такие же, как и в приземном воздухе.

.

Атмосферное давление: определение и факты

В книгах по метеорологии атмосфера Земли часто описывается как огромный воздушный океан, в котором мы все живем. На диаграммах наша родная планета изображена как окруженная огромным атмосферным морем высотой в несколько сотен миль, разделенным на несколько различных слоев. И все же та часть нашей атмосферы, которая поддерживает всю жизнь, о которой мы знаем, на самом деле чрезвычайно тонкая и простирается вверх только до 18000 футов - чуть более 3 миль. И та часть нашей атмосферы, которую можно измерить с некоторой степенью точности, достигает примерно 25 миль (40 километров).Кроме того, дать точный ответ относительно того, где в конечном итоге заканчивается атмосфера, практически невозможно; где-то между 200 и 300 милями появляется неопределенная область, где воздух постепенно разрежается и в конечном итоге растворяется в космическом вакууме.

Так что слой воздуха, окружающий нашу атмосферу, в конце концов не такой уж и большой. Как красноречиво выразился покойный Эрик Слоан, популярный специалист в области погоды: «Земля не висит в воздушном море - она ​​висит в космическом море, и на ее поверхности есть чрезвычайно тонкий слой газа.

И этот газ - наша атмосфера.

Воздух имеет вес

Если человек поднимется на высокую гору, например Мауна-Кеа на Большом острове Гавайи, где вершина достигает 13 796 футов (4206 метров), высока вероятность заражения высотной болезнью (гипоксией). Перед восхождением на вершину посетители должны остановиться в Информационном центре, расположенном на высоте 9 200 футов (2 804 м), где им говорят акклиматизироваться к высоте, прежде чем идти дальше на гору.«Ну, конечно, - скажете вы, - в конце концов, количество доступного кислорода на такой большой высоте значительно меньше по сравнению с тем, что присутствует на уровне моря».

Но, делая такое заявление, вы ошиблись бы !

Фактически, 21 процент атмосферы Земли состоит из живительного кислорода (78 процентов состоит из азота, а оставшийся 1 процент - из ряда других газов). И доля этого 21 процента практически одинакова как на уровне моря, так и на высокогорье.

Большая разница не в количестве присутствующего кислорода, а скорее в плотности и давлении .

Эта часто используемая аналогия сравнения воздуха с водой («океан воздуха») хороша, поскольку все мы буквально плывем по воздуху. А теперь представьте себе это: высокое пластиковое ведро до краев заполнено водой. Теперь возьмите ледоруб и проделайте отверстие в верхней части ведра. Вода будет медленно стекать. Теперь возьмите кирку и проделайте еще одну дырку в нижней части ведра.Что происходит? Там внизу вода будет стремительно брызгать резким потоком. Причина в разнице давления. Давление, которое оказывает вес воды внизу у дна ведра, больше, чем у вершины, поэтому вода «выжимается» из отверстия внизу.

Точно так же давление всего воздуха над нашими головами - это сила, которая выталкивает воздух в наши легкие и выжимает из него кислород в кровоток. Как только это давление падает (например, когда мы поднимаемся на высокую гору), в легкие поступает меньше воздуха, следовательно, меньше кислорода достигает нашего кровотока, что приводит к гипоксии; опять же, не из-за уменьшения количества доступного кислорода, а из-за уменьшения атмосферного давления.

Максимумы и минимумы

Итак, как атмосферное давление соотносится с суточными погодными условиями? Несомненно, вы видели прогнозы погоды, представленные по телевидению; встроенный в камеру метеоролог, ссылающийся на системы высокого и низкого давления. Что это вообще такое?

Короче говоря, каждый день солнечное тепло меняется по всей Земле. Из-за неравномерного солнечного нагрева температура меняется по всему земному шару; воздух на экваторе намного теплее, чем на полюсах.Таким образом, теплый легкий воздух поднимается и распространяется к полюсам, а более холодный и тяжелый воздух опускается к экватору.

Но мы живем на планете, которая вращается, поэтому эта простая картина ветра искажена до такой степени, что воздух искажен вправо от своего направления движения в Северном полушарии и влево в Южном полушарии. Сегодня мы знаем этот эффект как силу Кориолиса, и как прямое следствие этого возникают сильные спирали ветра, которые мы знаем как системы высокого и низкого давления.

В Северном полушарии воздух в областях с низким давлением движется по спирали против часовой стрелки и внутрь - например, ураганы - это механизмы Кориолиса, циркулирующие воздух против часовой стрелки. Напротив, в системах высокого давления воздух движется по спирали по часовой стрелке и наружу от центра. В Южном полушарии направление спиралевидного движения воздуха обратное.

Итак, почему мы обычно связываем высокое давление с хорошей погодой, а низкое - с неустойчивой погодой?

Системы высокого давления - это «купола плотности», которые давят вниз, а системы низкого давления похожи на «атмосферные долины», где плотность воздуха меньше.Поскольку холодный воздух имеет меньшую способность удерживать водяной пар, чем теплый воздух, облака и осадки вызываются охлаждением воздуха.

Итак, при увеличении давления воздуха температура повышается; под этими куполами высокого давления воздух имеет тенденцию опускаться (так называемое «проседание») на более низкие уровни атмосферы, где температуры выше и могут удерживать больше водяного пара. Любые капли, которые могут привести к образованию облаков, будут испаряться. Конечным результатом обычно становится более чистая и сухая среда.

И наоборот, если мы уменьшаем давление воздуха, воздух имеет тенденцию подниматься на более высокие уровни атмосферы, где температуры ниже. По мере того, как способность удерживать водяной пар уменьшается, пар быстро конденсируется, и облака (которые состоят из бесчисленных миллиардов крошечных капель воды или, на очень больших высотах, кристаллов льда) будут развиваться, и в конечном итоге выпадут осадки. Конечно, мы не могли прогнозировать зоны высокого и низкого давления без использования какого-либо устройства для измерения атмосферного давления.

Введите барометр

Атмосферное давление - это сила, действующая на единицу площади под действием веса атмосферы. Чтобы измерить этот вес, метеорологи используют барометр. Именно Евангелиста Торричелли, итальянский физик и математик, доказал в 1643 году, что он может сопоставить атмосферу со столбом ртути. Он фактически измерил давление, переведя его непосредственно в вес. Прибор, сконструированный Торричелли, был самым первым барометром. Открытый конец стеклянной трубки помещают в открытую емкость с ртутью.Атмосферное давление заставляет ртуть подниматься по трубке. На уровне моря столб ртути поднимется (в среднем) на высоту 29,92 дюйма или 760 миллиметров.

Почему бы не использовать воду вместо ртути? Причина в том, что на уровне моря высота водяного столба составляет около 34 футов! С другой стороны, ртуть в 14 раз плотнее воды и является самым тяжелым веществом, которое остается жидким при обычных температурах. Это позволяет прибору иметь более удобный размер.

Как НЕ использовать барометр

Прямо сейчас у вас может висеть барометр на стене вашего дома или офиса, но, по всей вероятности, это не трубка с ртутью, а циферблат со стрелкой, указывающей на текущее барометрическое давление. чтение давления. Такой прибор называется барометром-анероидом, который состоит из частично откачанной металлической ячейки, которая расширяется и сжимается при изменении давления, и прикреплен к механизму сцепления, который приводит в движение индикатор (стрелка) по шкале, градуированной в единицах давления, либо в дюймах. или миллибар.

Обычно на шкале индикатора вы также видите такие слова, как «Солнечный», «Сухой», «Неустойчивый» и «Бурный». Предположительно, когда стрелка указывает на эти слова, это означает, что впереди ожидаемая погода. «Солнечный», например, обычно встречается в диапазоне высокого барометрического давления - 30,2 или 30,3 дюйма. «Бурное», с другой стороны, можно найти в диапазоне низкого барометрического давления - 29,2 или ниже, возможно, даже иногда ниже 29 дюймов.

Все это казалось бы логичным, но все это довольно упрощенно.Например, могут быть моменты, когда стрелка будет указывать на «Солнечно», а небо вместо этого будет полностью затянуто облаками. А в других случаях стрелка будет указывать на «бурно», но вы можете увидеть солнечный свет, смешанный с голубым небом и быстро движущимися пухлыми облаками.

Как правильно пользоваться барометром

Поэтому наряду с черной стрелкой индикатора стоит обратить внимание на другую стрелку (обычно золотую), которую можно вручную настроить на любую часть циферблата.Когда вы проверяете свой барометр, сначала слегка постучите по передней части барометра, чтобы устранить любое внутреннее трение, а затем совместите золотую стрелку с черной. Затем проверьте несколько часов спустя, чтобы увидеть, как черная стрелка изменилась относительно золотой. Давление растет или падает? Если он падает, происходит ли это быстро (возможно, падает на несколько десятых дюйма)? Если так, то, возможно, приближается шторм. Если шторм только что прошел и небо прояснилось, барометр все еще может показывать «бурную» погоду, но если бы вы установили золотую стрелку несколько часов назад, вы почти наверняка увидели бы, что давление сейчас быстро растет, что говорит о что - несмотря на признаки шторма - приближается ясная погода.

И ваш прогноз можно еще больше улучшить, объединив ваши записи об изменении атмосферного давления с изменением направления ветра. Как мы уже узнали, воздух циркулирует по часовой стрелке вокруг систем высокого давления и против часовой стрелки вокруг систем низкого давления. Поэтому, если вы видите тенденцию к повышению давления и северо-западному ветру, вы можете ожидать, что в целом наступит хорошая погода, в отличие от падающего барометра и восточного или северо-восточного ветра, которые в конечном итоге могут привести к облакам и осадкам.

.

Атмосферное давление - Простая английская Википедия, бесплатная энциклопедия

Эта пластиковая бутылка была запечатана на высоте примерно 14 000 футов и была раздавлена ​​увеличением атмосферного давления (на 9 000 футов и 1 000 футов), когда она была опущена до уровня моря.

Атмосферное давление - это сила в области, которая прижимается к поверхности под весом атмосферы Земли, слоя воздуха. Воздух распределен по земному шару неравномерно. Он движется, и в разное время слой воздуха в одних местах толще, чем в других.Там, где слой воздуха толще, воздуха больше. Поскольку воздуха больше, давление в этом месте выше. Чем тоньше слой воздуха, тем ниже атмосферное давление.

На большей высоте плотность и давление атмосферы ниже. Это потому, что над возвышенностями не так много воздуха, который давит вниз.

Барометры могут использоваться для измерения атмосферного давления. [1] Атмосферное давление одинаково со всех сторон.Единица измерения давления в системе СИ - гПа. Другие единицы измерения, такие как Бар (единица измерения) и торр, используются для различных целей.

.

Давление

Давление в жидкости определяется как

«нормальная сила на единицу площади, действующая на воображаемую или реальную плоскую поверхность в жидкости или газе»

Уравнение для давления может быть выражено как :

p = F / A (1)

где

p = давление (фунт / дюйм 2 (psi), фунт / фут 2 (psf), Н / м 2 , кг / мс 2 (Па))

F = сила (Н) 1)

A = площадь (в 2 , ft 2 , m 2 )

1) В британско-английской инженерной системе особое внимание следует уделять силовой единице.Базовая единица измерения массы - снаряд, а единица измерения силы - фунт ( фунтов, ) или фунт силы ( фунтов, фунтов, ).

Абсолютное давление

Абсолютное давление - p abs - измеряется относительно абсолютного нулевого давления - давления, которое будет иметь место при абсолютном вакууме. Все расчеты, связанные с газовым законом, требуют, чтобы давление (и температура) выражались в абсолютных единицах.

Манометрическое давление

Манометр часто используется для измерения разности давлений между системой и окружающей атмосферой. Это давление часто называется манометрическим давлением и может быть выражено как

p г = p с - p атм (2)

где

p g = манометрическое давление (Па, фунт / кв. Дюйм)

p с = давление системы (Па, фунт / кв. Дюйм)

p атм = атмосферное давление (Па, фунт / кв. Дюйм)

Атмосферное давление

Атмосферное давление - это давление в окружающем воздухе на поверхности земли или "близко" к ней.Атмосферное давление зависит от температуры и высоты над уровнем моря.

Стандартное атмосферное давление

Стандартное атмосферное давление ( атм, ) обычно используется в качестве справочного материала при перечислении плотностей и объемов газа. Стандартное атмосферное давление определяется на уровне моря при 273 o K (0 o C) и составляет 1,01325 бар или 101325 Па (абсолютное) . Иногда используется температура 293 o K (20 o C) .

В британских единицах стандартное атмосферное давление составляет 14,696 фунтов на квадратный дюйм.

Единицы давления

Поскольку 1 Па - это малая единица измерения давления, широко используется единица измерения гектопаскаль (гПа), особенно в метеорологии.Единица измерения килопаскаль (кПа) обычно используется при проектировании технических приложений, таких как системы отопления, вентиляции и кондиционирования, трубопроводные системы и т. Д.

Некоторые уровни давления
Некоторые альтернативные единицы давления

A торр (часто используется в вакуумных приложениях) назван в честь Торричелли и представляет собой давление, создаваемое столбом ртути высотой 1 мм - равно 1/760 th атмосферы.

фунтов на квадратный дюйм (фунтов на квадратный дюйм) обычно использовался в Великобритании, но теперь почти во всех странах, кроме США, заменен на единицы СИ. Поскольку атмосферное давление составляет 14,696 фунтов на квадратный дюйм - столб воздуха на площади в один квадратный дюйм от поверхности Земли до космоса - весит 14,696 фунтов .

Штанга (бар) обычно используется в промышленности.Один бар составляет 100000 Па , и для большинства практических целей его можно приблизить к на одну атмосферу , даже если

1 бар = 0,9869 атм

Есть 1000 миллибар (мбар) в бар bar , стандартная единица измерения в метеорологии и погодных приложениях.

1 миллибар = 0,001 бар = 0,750 торр = 100 Па

Связанные мобильные приложения из Engineering ToolBox

- бесплатные приложения для автономного использования на мобильных устройствах.

.

Быстрое определение свежести семян лотоса с использованием поверхностной десорбции и атмосферного давления Химическая ионизация-масс-спектрометрия с многомерным анализом

Чтобы изучить новый метод определения свежести семян лотоса, семена лотоса хранятся в течение 0, 1, 2, и 3 года, соответственно, были использованы в качестве экспериментальных материалов и проанализированы с помощью DAPCI-MS (десорбционная химическая ионизация-масс-спектрометрия при атмосферном давлении). Полученные данные обрабатывались методами главных компонент (PCA) и искусственных нейронных сетей с обратным распространением (BP-ANN).Результат показал, что DAPCI-MS может получить обширную информацию о химическом материале с поверхности среза семян лотоса. Модель BP-ANN может применяться не только для различения свежих и выдержанных семян лотоса с точностью набора для тестирования 95,0% и 91,7% соответственно, но также для классификации семян лотоса с различным временем хранения с точностью набора для тестирования 90,0%. 85,0%, 85,0% и 90,0% соответственно. В документе разработан быстрый, удобный и точный метод определения свежести семян лотоса, который обеспечит надежное эталонное значение для быстрой проверки свежести пищевых продуктов с помощью метода быстрой масс-спектрометрии.

1. Введение

Лотос ( Nelumbo nucifera Gaertn.) - многолетнее водное растение кувшинок, широко распространенное в тропических и субтропических регионах [1]. Благодаря богатству белков, аминокислот, алкалоидов, флавоноидов, лецитина и других питательных веществ семена лотоса широко считаются полезной пищей [2, 3]. Кроме того, лотос - традиционное лекарственное растение в азиатских странах, включая Китай, Таиланд, Индию, Японию и Корею [4, 5]. В традиционной китайской медицине семена лотоса имеют функции бодрящей селезенки, остановки диареи, тонизирования почек, вяжущего эссенции, питания сердца и успокаивания ума [6, 7].В Корее семена лотоса - одно из самых известных традиционных лекарственных средств на травах для лечения сердечно-сосудистых заболеваний [8]. Семена лотоса также используются в качестве антидепрессанта и ингибитора воспаления в некоторых странах Азии [9, 10]. Недавние исследования показали, что экстракты семян лотоса обладают функциями защиты печени, улавливания свободных радикалов и борьбы со старением благодаря богатым флавоноидам, полисахаридам и алкалоидам [10–12].

Старение - очень распространенное явление для семян лотоса во время хранения, и было показано, что степень разложения крахмала увеличивается с увеличением срока хранения семян лотоса [13].Исследование качества семян лотоса с разным временем хранения показало, что, хотя количество крахмала, жира и белка оставалось примерно неизменным, некоторые конкретные составы значительно варьировались, например, большое количество свободных жирных кислот, образующихся в реакции гидролиза липидов, что приводит к снижению содержания сырого жира и увеличению числа жирных кислот [14]. Если семена лотоса хранятся более шести месяцев, обычно происходит повышение твердости и снижение вязкости из-за дыхания, окисления и действия ферментов [14].Даже при увеличении времени приготовления или температуры приготовления старые семена лотоса не могут показать хороший вкус и качество, как свежие семена лотоса [14]. Однако по внешнему виду трудно отличить свежесть семян лотоса с разным сроком хранения. Поэтому недобросовестные торговцы продавали свои выдержанные семена лотоса как свежие, что вредит интересам потребителей.

Старение также часто происходит при хранении других зерен [15, 16]. В настоящее время для определения свежести зерна чаще всего используется метод сенсорной оценки (GB / T15682-2008).Этот метод прост в использовании, но требует профессионально подготовленных опытных специалистов. Кроме того, из-за сенсорных различий инспекторов результаты тестов могут сопровождаться большими ошибками [17]. Существует также множество методов обнаружения, таких как метод дифференциального сканирующего калориметра (ДСК) для определения степени желатинизации крахмала из семян лотоса [13], метод дифракции рентгеновских лучей для определения кристалличности пшеничного крахмала [18], сканирующая электронная микроскопия. метод определения структуры кристаллов рисового крахмала [19] и экспресс-анализ вязкости (RVA) для проверки характеристик рисовой жидкости [20], в зависимости от измерительных приборов.Используя эти методы, можно получить относительно точные результаты, но большинство из них требует сложной предварительной обработки проб, такой как экстракция и очистка крахмала, белка и других веществ. Технология химической ионизации-масс-спектрометрии при атмосферном давлении с поверхностной десорбцией (DAPCI-MS) - это мощный метод мягкой ионизации, разработанный в последние годы. Это быстрый, неинвазивный метод в режиме реального времени для анализа сложных матричных образцов. Кроме того, DAPCI-MS не требует токсичных реагентов и не имеет вторичного загрязнения.Поэтому он широко применяется во многих областях, включая определение качества пищевых продуктов [21–25].

В этом исследовании была использована технология DAPCI-MS для получения отпечатков пальцев MS семян лотоса с разным временем хранения, а полученные данные были обработаны с помощью анализа главных компонентов (PCA) и искусственных нейронных сетей с обратным распространением (BP-ANN) для построения идентификационная модель семян лотоса разной свежести. В эксперименте срезы семян лотоса были исследованы непосредственно без сложной предварительной обработки, что привело к отсутствию или незначительной потере информации.Таким образом, это исследование может служить эффективным эталоном для определения свежести семян лотоса на рынке и может быть использовано в исследованиях старения других зерновых культур.

2. Материалы и методы
2.1. Образцы семян лотоса

Семена лотоса N. nucifera « guangchangbailian » были предоставлены Гуанчанским научно-исследовательским институтом лотоса (Цзянси, Китай). Свежие семена лотоса удаляли с семенной оболочки, сушили в вакууме до содержания влаги примерно 13%, упаковывали в вакуумную упаковку и хранили в темноте при 25-27 ° C в качестве экспериментального материала.Эти семена лотоса были отобраны после хранения в течение 0, 1, 2 и 3 лет соответственно. Семена лотоса разрезали на ломтики толщиной 2-3 мм для анализа DAPCI-MS.

2.2. Инструменты и условия работы

Эксперименты проводились с использованием коммерческого масс-спектрометра LTQ-XL (Thermo Fisher Scientific, Сан-Хосе, Калифорния, США) в сочетании с самодельным источником DAPCI для генерации ионов, который был описан ранее [21, 25 ]. Как показано на рисунке 1, игла из нержавеющей стали (игла из нержавеющей стали с изолятором на конце) была вставлена ​​коаксиально в капилляр из плавленого кварца, и эта геометрия была тщательно скомпонована так, чтобы игла из нержавеющей стали выступала всего на 5 мм.Капилляр и острая игла были закреплены коаксиально тройником (Swagelok, Огайо, США) и кремнеземным наконечником. Незанятый конец тройника соединяли с газовой линией, в которую подавали азот высокого давления (~ 0,5 МПа), и в качестве реактивного реагента подавали пары смеси метанол / H 2 O. Эти газы-предшественники выбрасывались из точечного отверстия через тройник. При подаче высокого напряжения (3,5 кВ, разрядный ток около 0,1 мА) на иглу ТС происходил коронный разряд с генерацией первичных кластерных ионов реактивных реагентов в окружающем воздухе.Этот источник был тщательно выровнен с масс-спектрометром LTQ, а кончик электрода был расположен на расстоянии ~ 5 мм от входного отверстия. Расстояние между острием иглы и поверхностью образца составляло 1 ~ 3 мм. Сгенерированные первичные ионы ускорялись сильно локализованным электрическим полем и распыляющим потоком, а затем бомбардировали поверхность образца, чтобы произвести ионы аналитов в окружающей среде.


Источник DAPCI и масс-спектрометр LTQ работали в режиме положительных ионов.Температура нагретого капилляра была установлена ​​на уровне 150 ° C. Другие параметры были рекомендованы производителем прибора по умолчанию. Все масс-спектры были получены со средним временем 1,6 мин, в то время как из спектров производилось вычитание фона. Эксперименты по диссоциации, индуцированной столкновением (CID), до MS 3 , были выполнены на персонаже

.

Смотрите также